skip to main content


This content will become publicly available on August 28, 2024

Title: Robotic Tutors for Nurse Training: Opportunities for HRI Researchers
An ongoing nurse labor shortage has the potential to impact patient care well-being in the entire healthcare system. Moreover, more complex and sophisticated nursing care is required today for patients in hospitals forcing hospital-based nurses to carry out frequent training and assessment procedures, both to onboard new nurses and to validate skills of existing staff that guarantees best practices and safety. In this paper, we recognize an opportunity for the development and integration of intelligent robot tutoring technology into nursing education to tackle the growing challenges of nurse deficit. To this end, we identify specific research problems in the area of human-robot interaction that will need to be addressed to enable robot tutors for nurse training.  more » « less
Award ID(s):
2222876
NSF-PAR ID:
10446652
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background According to the US Bureau of Labor Statistics, nurses will be the largest labor pool in the United States by 2022, and more than 1.1 million nursing positions have to be filled by then in order to avoid a nursing shortage. In addition, the incidence rate of musculoskeletal disorders in nurses is above average in comparison with other occupations. Robot-assisted health care has the potential to alleviate the nursing shortage by automating mundane and routine nursing tasks. Furthermore, robots in health care environments may assist with safe patient mobility and handling and may thereby reduce the likelihood of musculoskeletal disorders. Objective This pilot study investigates the perceived ease of use and perceived usefulness (acceptability) of a customized service robot as determined by nursing students (as proxies for nursing staff in health care environments). This service robot, referred to as the Adaptive Robotic Nurse Assistant (ARNA), was developed to enhance the productivity of nurses through cooperation during physical tasks (eg, patient walking, item fetching, object delivery) as well as nonphysical tasks (eg, patient observation and feedback). This pilot study evaluated the acceptability of ARNA to provide ambulatory assistance to patients. Methods We conducted a trial with 24 participants to collect data and address the following research question: Is the use of ARNA as an ambulatory assistive device for patients acceptable to nurses? The experiments were conducted in a simulated hospital environment. Nursing students (as proxies for nursing staff) were grouped in dyads, with one participant serving as a nurse and the other acting as a patient. Two questionnaires were developed and administrated to the participants based on the Technology Acceptance Model with respect to the two subscales of perceived usefulness and perceived ease of use metrics. In order to evaluate the internal consistency/reliability of the questionnaires, we calculated Cronbach alpha coefficients. Furthermore, statistical analyses were conducted to evaluate the relation of each variable in the questionnaires with the overall perceived usefulness and perceived ease of use metrics. Results Both Cronbach alpha values were acceptably high (.93 and .82 for perceived usefulness and perceived ease of use questionnaires, respectively), indicating high internal consistency of the questionnaires. The correlation between the variables and the overall perceived usefulness and perceived ease of use metrics was moderate. The average perceived usefulness and perceived ease of use metrics among the participants were 4.13 and 5.42, respectively, out of possible score of 7, indicating a higher-than-average acceptability of this service robot. Conclusions The results served to identify factors that could affect nurses’ acceptance of ARNA and aspects needing improvement (eg, flexibility, ease of operation, and autonomy level). 
    more » « less
  2. Fernández-Alcántara, Manuel (Ed.)
    Background Nurse identification of patient deterioration is critical, particularly during the COVID-19 pandemic, as patients can deteriorate quickly. While the literature has shown that nurses rely on intuition to make decisions, there is limited information on what sources of data experienced nurses utilize to inform their intuition. The objectives of this study were to identify sources of data that inform nurse decision-making related to recognition of deteriorating patients, and explore how COVID-19 has impacted nurse decision-making. Methods In this qualitative study, experienced nurses voluntarily participated in focused interviews. During focused interviews, expert nurses were asked to share descriptions of memorable patient encounters, and questions were posed to facilitate reflections on thoughts and actions that hindered or helped their decision-making. They were also asked to consider the impact of COVID-19 on nursing and decision-making. Interviews were transcribed verbatim, study team members reviewed transcripts and coded responses, and organized key findings into themes. Results Several themes related to decision-making were identified by the research team, including: identifying patient care needs, workload management, and reflecting on missed care opportunities to inform learning. Participants (n = 10) also indicated that COVID-19 presented a number of unique barriers to nurse decision-making. Conclusions Findings from this study indicate that experienced nurses utilize several sources of information to inform their intuition. It is apparent that the demands on nurses in response to pandemics are heightened. Decision-making themes drawn from participants’ experiences can to assist nurse educators for training nursing students on decision-making for deteriorating patients and how to manage the potential barriers (e.g., resource constraints, lack of family) associated with caring for patients during these challenging times prior to encountering these issues in the clinical environment. Nurse practice can utilize these findings to increase awareness among experienced nurses on recognizing how pandemic situations can impact to their decision-making capability. 
    more » « less
  3. null (Ed.)
    Background Clinical alarm system safety is a national patient safety goal in the United States. Physiologic monitors are associated with the highest number of device alarms and alarm-related deaths. However, research involving nurses’ use of physiologic monitors is rare. Hence, the identification of critical usability issues for monitors, especially those related to patient safety, is a nursing imperative. Objective This study examined nurses’ usability of physiologic monitors in intensive care units with respect to the effectiveness and efficiency of monitor use. Methods In total, 30 nurses from 4 adult intensive care units completed 40 tasks in a simulation environment. The tasks were common monitoring tasks that were crucial for appropriate monitoring and safe alarm management across four categories of competencies: admitting, transferring, and discharging patients using the monitors (7 tasks); managing measurements and monitor settings (23 tasks); performing electrocardiogram (ECG) analysis (7 tasks); and troubleshooting alarm conditions (3 tasks). The nurse-monitor interaction was video-recorded. The principal investigator and two expert intensive care units nurse educators identified, classified, and validated task success (effectiveness) and the time of task completion (efficiency). Results Among the 40 tasks, only 2 (5%) were successfully completed by all the nurses. At least 1-27 (3%-90%) nurses abandoned or did not correctly perform 38 tasks. The task with the shortest completion time was “take monitor out of standby” (mean 0:02, SD 0:01 min:s), whereas the task “record a 25 mm/s ECG strip of any of the ECG leads” had the longest completion time (mean 1:14, SD 0:32 min:s). The total time to complete 37 navigation-related tasks ranged from a minimum of 3 min 57 s to a maximum of 32 min 42 s. Regression analysis showed that it took 6 s per click or step to successfully complete a task. To understand the nurses’ thought processes during monitor navigation, the authors analyzed the paths of the 2 tasks with the lowest successful completion rates, where only 13% (4/30) of the nurses correctly completed these 2 tasks. Although 30% (9/30) of the nurses accessed the correct screen first for task 1 and task 2, they could not find their way easily from there to successfully complete the 2 tasks. Conclusions Usability testing of physiologic monitors revealed major ineffectiveness and inefficiencies in the current nurse-monitor interactions. The results indicate the potential for safety and productivity issues in completing routine tasks. Training on monitor use should include critical monitoring functions that are necessary for safe, effective, efficient, and appropriate monitoring to include knowledge of the shortest navigation path. It is imperative that vendors’ future monitor designs mimic clinicians’ thought processes for successful, safe, and efficient monitor navigation. 
    more » « less
  4. Clinically, nurses must rapidly identify deteriorating patients and escalate patient care to adverse events. Novices, however, can easily succumb to cognitive overload. Augmented-reality (AR) devices, such as the Microsoft HoloLens 2, may help nurses attend to task-relevant information more effectively. The aim of this pilot study was to assess experienced nurses’ perceptions on the usability of AR. Practicing nurses were recruited for this study. Following a brief tutorial, demonstration and hands-on use of the HoloLens, nurses completed the system-usability scale (SUS) to rate usability. Additionally, interviews were conducted after the simulated use session. Experienced nurses (n=11) rated the usability of AR as 62.5±7.8. Themes that emerged from our open-ended interviews included the need for AR in nursing education and the potential benefit of a patient care checklist. Use of AR to support nurse decision making may reduce cognitive workload and focus attention on critical areas to recognize patient deterioration. 
    more » « less
  5. null (Ed.)
    The COVID-19 pandemic has placed an overwhelming strain on our Nation's ability to treat patients; the number of patients who need to be tested continues to rise. With nurses also becoming infected, the number of trained professionals who can perform tasks such as testing of patients along with providing care involving hooking up patients to ventilators continues to decrease as well. There is a need to explore the adoption of virtual computer based training mediums which will enable new nurses and others to be trained in safe and efficient procedures involving patients during this pandemic period. In this paper, the design of a VR based simulator based on Human Centered Computing (HCC) principles is discussed. The role of HCC factors such as affordance and cognitive load on the comprehension and scene understanding of nurses during training and the acquisition of knowledge of safety procedures and detailed steps (pertaining to nasal sample collection and use of ventilators on patients) has been studied with the involvement of nurse and nurse trainee participants. Adoption of a participatory design approach involving experts (nurses, doctors involved in covid-19 testing and treatment) has provided a foundational basis for design of the training environments and assessment activities. Formal information centric process models of the nasal swabbing procedures and ventilator hookup tasks were created using the engineering Enterprise Modeling Language (eEML). The preliminary results from the assessment activities indicate the positive impact of such HCC based 3Dsimulators in such training of first responders. 
    more » « less