Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Cover crops, a promising strategy to increase soil organic carbon (SOC) storage in croplands and mitigate climate change, have typically been shown to benefit soil carbon (C) storage from increased plant C inputs. However, input‐driven C benefits may be augmented by the reduction of C outputs induced by cover crops, a process that has been tested by individual studies but has not yet been synthesized. Here we quantified the impact of cover crops on organic C loss via soil erosion (SOC erosion) and revealed the geographical variability at the global scale. We analyzed the field data from 152 paired control and cover crop treatments from 57 published studies worldwide using meta‐analysis and machine learning. The meta‐analysis results showed that cover crops widely reduced SOC erosion by an average of 68% on an annual basis, while they increased SOC stock by 14% (0–15 cm). The absolute SOC erosion reduction ranged from 0 to 18.0 Mg C−1 ha−1 year−1and showed no correlation with the SOC stock change that varied from −8.07 to 22.6 Mg C−1 ha−1 year−1at 0–15 cm depth, indicating the latter more likely related to plant C inputs. The magnitude of SOC erosion reduction was dominantly determined by topographic slope. The global map generated by machine learning showed the relative effectiveness of SOC erosion reduction mainly occurred in temperate regions, including central Europe, central‐east China, and Southern South America. Our results highlight that cover crop‐induced erosion reduction can augment SOC stock to provide additive C benefits, especially in sloping and temperate croplands, for mitigating climate change.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Land use change (LUC) alters the global carbon (C) stock, but our estimation of the alteration remains uncertain and is a major impediment to predicting the global C cycle. The uncertainty is partly due to the limited number and geographical bias of observations, and limited exploration of its predictors. Here we generated a comprehensive global database of 5,980 observations from 790 articles. The number of sites evaluated is at least seven times larger than in previous meta‐analyses. Our constrained estimates of different LUC's effects on soil organic C (SOC) and their variations across global climates reveal underestimation/overestimation in previous estimates. Converting forests and grasslands to croplands reduced SOC by 24.5% ± 1.53% (−11.03 ± 1.06 Mg ha−1) and 22.7% ± 1.22% (−8.09 ± 0.67 Mg ha−1), while 28.0% ± 1.56% (4.46 ± 0.42 Mg ha−1) and 33.5% ± 1.68% (5.8 ± 0.38 Mg ha−1) increases, respectively, were obtained in the reverse processes. Converting forests to grasslands decreased SOC by 2.1% ± 1.22% (−1.13 ± 0.44 Mg ha−1), while the reverse process increased SOC by 18.6% ± 1.73% (3.31 ± 0.51 Mg ha−1). Modeled relative importance of 10 drivers of LUC's impact on SOC revealed that higher initial SOC (iSOC) does not solely determine SOC loss in SOC‐negative LUC scenarios as previously proposed. Across four decades, reconverting croplands to forests and grasslands recovered only 49.5% (6.1 ± 0.51 Mg ha−1) and 75.3% (7.0 ± 0.38 Mg ha−1) of the iSOC, respectively, indicating the need for protecting C‐rich ecosystems. Our global data set advances information on LUC's effect on SOC and can be valuable to constrain Earth system models to reliably estimate global SOC stocks and plan climate change mitigation strategies.more » « less
-
Free, publicly-accessible full text available October 23, 2026
-
Free, publicly-accessible full text available July 22, 2026
-
Free, publicly-accessible full text available July 15, 2026
-
Free, publicly-accessible full text available March 20, 2026
-
Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.more » « less
-
Key Points A new semi‐analytical spin‐up (SASU) framework combines the default accelerated spin‐up method and matrix analytical algorithm SASU accelerates CLIM5 spin‐up by tens of times, becoming the fastest method to our knowledge SASU is applicable to most biogeochemical models and enables computationally costly study, for example, sensitivity analysismore » « less
-
Key Points More than 70 microbial models have recently been developed to simulate soil carbon dynamics Diversity in model structures and parameters indicates uncertainty in translating current knowledge of microbial processes into models Data‐driven model development and parameterization are highly recommended to improve the prediction of microbial modelsmore » « less
An official website of the United States government
