skip to main content


Title: Improving Distances to Binary Millisecond Pulsars with Gaia
Abstract

Pulsar distances are notoriously difficult to measure, and play an important role in many fundamental physics experiments, such as pulsar timing arrays. Here, we perform a cross-match between International PTA pulsars (IPTA) and Gaia's Data Release 2 (DR2) and Data Release 3 (DR3). We then combine the IPTA pulsar’s parallax with its binary companion’s parallax, found in Gaia, to improve the distance measurement to the binary. We find seven cross-matched IPTA pulsars in Gaia DR2, and when using Gaia DR3 we find six IPTA pulsar cross-matches but with seven Gaia objects. Moving from Gaia DR2 to Gaia DR3, we find that the Gaia parallaxes for the successfully cross-matched pulsars improved by 53%, and pulsar distances improved by 29%. Finally, we find that binary companions with a <3.0σdetection are unreliable associations, setting a high bar for successful cross-matches.

 
more » « less
Award ID(s):
2020265
PAR ID:
10446814
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 89
Size(s):
Article No. 89
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The third data release (DR3) of Gaia has provided a fivefold increase in the number of radial velocity measurements of stars, as well as a stark improvement in parallax and proper motion measurements. To help with studies that seek to test models and interpret Gaia DR3, we present nine Gaia synthetic surveys, based on three solar positions in three Milky Way-mass galaxies of theLattesuite of theFire-2 cosmological simulations. These synthetic surveys match the selection function, radial velocity measurements, and photometry of Gaia DR3, adapting the code baseAnanke, previously used to match the Gaia DR2 release by Sanderson et al. The synthetic surveys are publicly available and can be found athttp://ananke.hub.yt/. Similarly to the previous release ofAnanke, these surveys are based on cosmological simulations and thus are able to model nonequilibrium dynamical effects, making them a useful tool in testing and interpreting Gaia DR3.

     
    more » « less
  2. ABSTRACT

    In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.

     
    more » « less
  3. Abstract

    The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.

     
    more » « less
  4. Abstract

    We present the discovery and timing solutions of four millisecond pulsars (MSPs) discovered in the Arecibo 327 MHz Drift-Scan Pulsar Survey. Three of these pulsars are in binary systems, consisting of a redback (PSR J2055+1545), a black widow (PSR J1630+3550), and a neutron star–white dwarf binary (PSR J2116+1345). The fourth MSP, PSR J2212+2450, is isolated. We present the multiyear timing solutions as well as polarization properties across a range of radio frequencies for each pulsar. We perform a multiwavelength search for emission from these systems and find an optical counterpart for PSR J2055+1545 in Gaia DR3, as well as a gamma-ray counterpart for PSR J2116+1345 with the Fermi-LAT telescope. Despite the close colocation of PSR J2055+1545 with a Fermi source, we are unable to detect gamma-ray pulsations, likely due to the large orbital variability of the system. This work presents the first two binaries found by this survey with orbital periods shorter than a day; we expect to find more in the 40% of the survey data that have yet to be searched.

     
    more » « less
  5. Abstract

    Using data from Gaia DR3, we construct a sample of 14,791 gravitationally bound wide pairs in which one of the components is an unresolved binary with an astrometric orbital or acceleration solution. These systems are hierarchical triples, with inner binary separations of order 1 au, and outer separations of 100–100,000 au. Leveraging the fact that the inner binary and outer tertiary should have nearly identical parallaxes, we use the sample to calibrate the parallax uncertainties for orbital and acceleration binary solutions. We find that the parallax uncertainties of orbital solutions are typically underestimated by a factor of 1.3 atG> 14, and by a factor of 1.7 atG= 8–14. The true parallax uncertainties are nevertheless a factor of ∼10 smaller than those of the single-star astrometric solutions for the same sources. The parallax uncertainties of acceleration solutions are underestimated by larger factors of 2–3 but still represent a significant improvement compared to the sources’ single-star solutions. We provide tabulated uncertainty inflation factors for astrometric binary solutions and make the catalog of hierarchical triples publicly available.

     
    more » « less