Abstract Phylogenetic and species‐based taxonomic descriptions of community structure may provide complementary information about the mechanisms driving community assembly across different environments. Environmental filtering may have similar effects on taxonomic and phylogenetic diversity under the assumption of niche conservatism, whereas competitive exclusion could produce contrasting patterns in these diversity metrics. In grassland restorations, these diversity patterns might then reveal potential assembly mechanisms underlying the impacts of restoration and management conditions on community structure.We compared plant community structure (alpha diversity, composition, and within‐site beta diversity) from both phylogenetic and taxonomic perspectives. Using surveys from 120 tallgrass prairie restorations in four regions of the Midwestern United States, we examined the effects of four potential drivers or environmental gradients: precipitation in the first year of restoration, seed mix richness, time since last prescribed fire, and restoration age, and included soil conditions as a covariate.First‐year precipitation influenced taxonomic community structure, but had weak effects on phylogenetic diversity and composition. Similarly, greater seed mix richness increased taxonomic diversity but did not influence phylogenetic diversity. Taxonomic, but not phylogenetic, diversity generally was lower in older restorations and those with a longer time since the last prescribed fire. These drivers consistently explained more variation in taxonomic than phylogenetic diversity and composition, perhaps in part because species turnover was largely among related species, producing weak impacts on phylogenetic community measures.An impact of precipitation on taxonomic but not phylogenetic diversity suggests that there may not be large differences in drought tolerance among clades that would cause phylogenetic patterns to arise from this environmental filter. Declining taxonomic diversity but not phylogenetic diversity is consistent with competitive exclusion as an assembly mechanism when competition is strongest between related species.Synthesis. This research shows how studying taxonomic and phylogenetic diversity of ecosystem restorations can inform plant community ecology and help natural resource managers better predict the outcomes of restoration actions and management.
more »
« less
The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of pre‐adapted clades?
Summary Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre‐adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes.We develop a novel approach and method based on the decomposition of species turnover into within‐ and among‐clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots.We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes.Our results suggest that immigration and sorting of clades pre‐adapted to montane habitats is the primary mechanism shaping tree communities across elevations.
more »
« less
- PAR ID:
- 10446840
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 232
- Issue:
- 6
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 2506-2519
- Size(s):
- p. 2506-2519
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Environmental gradients act as potent filters on species distributions driving compositional shifts across communities. Compositional shifts may reflect differences in physiological tolerances to a limiting resource that result in broad distributions for tolerant species and restricted distributions for intolerant species (i.e. a nested pattern). Alternatively, trade‐offs in resource use or conflicting species' responses to multiple resources can result in complete turnover of species along gradients.We combined trait (leaf area, leaf mass per area, wood density and maximum height) and distribution data for 550 tree species to examine taxonomic and functional composition at 72 sites across strong gradients of soil phosphorus (P) and rainfall in central Panama.We determined whether functional and taxonomic composition was nested or turned over completely and whether community mean traits and species composition were more strongly driven by P or moisture.Turnover characterized the functional composition of tree communities. Leaf traits responded to both gradients, with species having larger and thinner leaves in drier and more fertile sites than in wetter and less fertile sites. These leaf trait–moisture relationships contradict predictions based on drought responses and suggest a greater role for differences in light availability than in moisture. Shifts in wood density and maximum height were weaker than for leaf traits with taller species dominating wet sites and low wood density species dominating P‐rich sites.Turnover characterized the taxonomic composition of tree communities. Geographic distances explained a larger fraction of variation for taxonomic composition than for functional composition, and community mean traits were more strongly driven by P than moisture.Synthesis. Our results offer weak support for the tolerance hypothesis for tree communities in central Panama. Instead, we observe functional and taxonomic turnover reflecting trade‐offs and conflicting species' responses to multiple abiotic factors including moisture, soil phosphorus and potentially other correlated variables (e.g. light).more » « less
-
Abstract Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change.more » « less
-
Abstract Next‐Generation Sequencing (NGS) is a powerful tool that has been rapidly adopted by many ecologists studying microbial communities. Despite the exciting demonstration of NGS technology as a tool for ecological research, cryptic pitfalls inherent to its use can obscure correct interpretation of NGS data. Here, we provide an accessible overview of a NGS process that uses marker gene amplicon sequences (MGAS) that will allow scientists, particularly community ecologists, to make appropriate methodological choices and understand limits on inference about community composition and diversity that can be drawn from MGAS data.We describe the MGAS pipeline, focusing specifically on cryptic sources of variation that have received less emphasis in the ecological literature, but which may substantially impact inference about microbial community diversity and composition. By simulating communities from published microbiome data, we demonstrate how these sources of variation can generate inaccurate or misleading patterns.We specifically highlight sample dilution without researcher awareness and lane‐to‐lane variability, two cryptic sources of variation arising during the MGAS pipeline. These sources of variation affect estimates of species presence and relative abundance, particularly for species with moderate to low abundances. Each of these sources of bias can lead to errors in the estimation of both absolute and relative abundance within, and turnover among, microbial communities.Awareness and understanding of what happens and, specifically, why it happens during MGAS generation is key to generating a strong dataset and building a robust community matrix. Requesting sample dilution information from the sequencing centre, including technical replicates across sequencing lanes, and understanding how sampling intensity and community taxa distribution patterns shape the measurement of community richness, evenness and diversity are critical for drawing correct ecological inferences using MGAS data.more » « less
-
Abstract Genomic methods are becoming increasingly valuable and established in ecological research, particularly in nonmodel species. Supporting their progress and adoption requires investment in resources that promote (i) reproducibility of genomic analyses, (ii) accessibility of learning tools and (iii) keeping pace with rapidly developing methods and principles.We introduce marineomics.io, an open‐source, living document to disseminate tutorials, reproducibility tools and best principles for ecological genomic research in marine and nonmodel systems.The website's existing content spans population and functional genomics, including current recommendations for whole‐genome sequencing, RAD‐seq, Pool‐seq and RNA‐seq. With the goal to facilitate the development of new, similar resources, we describe our process for aggregating and synthesizing methodological principles from the ecological genomics community to inform website content. We also detail steps for authorship and submission of new website content, as well as protocols for providing feedback and topic requests from the community.These web resources were constructed with guidance for doing rigorous, reproducible science. Collaboration and contributions to the website are encouraged from scientists of all skill sets and levels of expertise.more » « less