skip to main content


Title: Electrohydrodynamic Printed PEDOT:PSS/Graphene/PVA Circuits for Sustainable and Foldable Electronics
Abstract

The generation of electronic waste (e‐waste) poses a significant environmental challenge, necessitating strategies to extend electronics’ lifespan and incorporate eco‐friendly materials to enable their rapid degradation after disposal. Foldable electronics utilizing eco‐friendly materials offer enhanced durability during operation and degradability at the end of their life cycle. However, ensuring robust physical adhesion between electrodes/circuits and substrates during the folding process remains a challenge, leading to interface delamination and electronic failure. In this study, electrohydrodynamic (EHD) printing is employed as a cost‐effective method to fabricate the eco‐friendly foldable electronics by printing PEDOT:PSS/graphene composite circuits onto polyvinyl alcohol (PVA) films. The morphology and electrical properties of the printed patterns using inks with varying graphene and PEDOT:PSS weight ratios under different printing conditions are investigated. The foldability of the printed electronics is demonstrated, showing minimal resistance variation and stable electronic response even after four folds (16 layers) and hundreds of folding and unfolding cycles. Additionally, the application of printed PEDOT:PSS/graphene circuit is presented as a resistive temperature sensor for monitoring body temperature and respiration behavior. Furthermore, the transient features and degradation of the PEDOT:PSS/graphene/PVA based foldable electronics are explored, highlighting the potential promise as transient electronics in reducing electronic waste.

 
more » « less
Award ID(s):
2134664
NSF-PAR ID:
10446859
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
8
Issue:
22
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Resistors are basic yet essential circuit components that must be fabricated with high precision at low cost if they are to be viable for flexible electronic applications. Inkjet printing is one of many additive fabrication techniques utilized to realize this goal. In this work, a process termed self-aligned capillarity-assisted lithography for electronics (SCALE) was used to fabricate inkjet-printed resistors on flexible substrates. Capillary channels and reservoirs imprinted onto flexible substrates enabled precise control of resistor geometry and straightforward alignment of materials. More than 300 devices were fabricated using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the resistive material and silver as the electrode material. By varying PEDOT:PSS ink formulation and resistor geometry, resistances spanning from 170 Ω to 3.8 MΩ were achieved. Over 98% of devices were functional and the relative standard deviation in resistance ranged from 3% to 18% depending on resistor length and ink composition. The resistors showed no significant change in resistance after 10 000 cycles of bend testing at 1.6% surface tensile strain. In summary, this work demonstrated a fully roll-to-roll compatible process for inkjet printing resistors with superior properties.

     
    more » « less
  2. Abstract

    Recyclable and biodegradable microelectronics, i.e., “green” electronics, are emerging as a viable solution to the global challenge of electronic waste. Specifically, flexible circuit boards represent a prime target for materials development and increasing the utility of green electronics in biomedical applications. Circuit board substrates and packaging are good dielectrics, mechanically and thermally robust, and are compatible with microfabrication processes. Poly(octamethylene maleate (anhydride) citrate) (POMaC) – a citric acid-based elastomer with tunable degradation and mechanical properties – presents a promising alternative for circuit board substrates and packaging. Here, we report the characterization of Elastomeric Circuit Boards (ECBs). Synthesis and processing conditions were optimized to achieve desired degradation and mechanical properties for production of stretchable circuits. ECB traces were characterized and exhibited sheet resistance of 0.599 Ω cm−2, crosstalk distance of <0.6 mm, and exhibited stable 0% strain resistances after 1000 strain cycles to 20%. Fabrication of single layer and encapsulated ECBs was demonstrated.

     
    more » « less
  3. Abstract

    Here, an environmentally‐friendly and scalable process is reported to synthesize reduced graphene oxide (RGO) thin films for printed electronics applications. The films are produced by inkjet printing GO flakes dispersed binder‐free in aqueous solutions followed by treatment with a nonthermal, radio‐frequency (RF) plasma containing only argon (Ar) gas. The plasma process is found to heat the substrate to temperatures no greater than 138 °C, enabling RGO to be printed directly on a wide range of temperature‐sensitive substrate materials including photo paper. Unlike other low‐temperature methods such as electrochemical reduction, plasma reduction is friendly to moisture absorbent materials. Moreover, the plasma treatment can be performed on nonconducting substrates, eliminating the need for film transfer. From an applications perspective, the printed, plasma‐reduced RGO exhibits excellent electrical, mechanical, and electrochemical properties. As a technology demonstrator, the working electrodes of hydrogen peroxide (H2O2) sensors fabricated from plasma‐reduced GO show a sensitivity of 277 ± 80 µA mm−1cm−2, which is comparable to RGO working electrodes made by electrochemical reduction.

     
    more » « less
  4. Screen printing is a promising route towards high throughput printed electronics. Currently, the preparation of nanomaterial based conductive inks involves complex formulations with often toxic surfactants in the ink's composition, making them unsuitable as an eco-friendly printing technology. This work reports the development of a silver nanowire (AgNW) ink with a relatively low conductive particle loading of 7 wt%. The AgNW ink involves simple formulation and comprises a biodegradable binder and a green solvent with no toxic surfactants in the ink formulation, making it an eco-friendly printing process. The formulated ink is suitable for printing on a diverse range of substrates such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyimide (PI) tape, glass, and textiles. By tailoring the rheological behaviour of the ink and developing a one-step post-printing process, a minimum feature size of 50 μm and conductivity as high as 6.70 × 10 6 S m −1 was achieved. Use of a lower annealing temperature of 150 °C makes the process suitable for plastic substrates. A flexible textile heater and a wearable hydration sensor were fabricated using the reported AgNW ink to demonstrate its potential for wearable electronic applications. 
    more » « less
  5. Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions. 
    more » « less