Abstract We report for the first time that Pd nanocrystals can absorb H via a “single‐phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7‐ and 12‐nm in size are exposed to H atoms, the H‐saturated twin boundaries can divide each particle into 20 smaller single‐crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single‐phase pathway and one can readily obtain PdHxwith anyx in the range of 0–0.7. When switched to Pd octahedral nanocrystals, the single‐phase pathway is only observed for particles of 7 nm in size. We also establish that the H‐absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H‐absorption behaviors, the PdHx(x=0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.
more »
« less
Shape Transformation via Etching and Regrowth: A Systematic Study of Pd Nanocrystals with Different Shapes and Twin Structures
Abstract This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single‐crystal cubes bounded by {100} facets, single‐crystal octahedra and tetrahedra enclosed by {111} facets; and multiple‐twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self‐nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18‐nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower‐like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size.
more »
« less
- Award ID(s):
- 2105602
- PAR ID:
- 10446951
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 48
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The synthesis of cone‐shaped Pt nanoparticles featuring compressively‐strained {111} facets by depositing Pt atoms on the vertices of Pd icosahedral nanocrystals, followed by selective removal of the Pd template via wet etching, is reported. By controlling the lateral dimensions down to ca. 3 nm, together with a thickness of ca. 2 nm, the Pt cones show greatly enhanced specific and mass activities toward oxygen reduction, with values being 2.8 and 6.4 times those of commercial Pt/C, respectively. Both the strain field and the observed activity trend are rationalized using density functional theory calculations. With the formation of ultrathin linkers among the Pt cones derived from the same Pd icosahedral seed, the interconnected Pt cones acquire stronger interactions with the carbon support, preventing them from detachment and aggregation during the catalytic reaction. Even after 20 000 cycles of accelerated durability test, the Pt cones still show a mass activity 5.3 times higher than the initial value of the Pt/C.more » « less
-
Non-additive mixing plays a key role in the properties of molecular fluids and solids. In this work, the potential for athermal order–disorder phase transitions is explored in non-additive binary colloidal nanoparticles that form substitutionally ordered compounds, namely, for equimolar mixtures of octahedra + spheres, which form a CsCl lattice compound, and cubes + spheres, which form a NaCl crystal. Monte Carlo simulations that target phase coexistence conditions were used to examine the effect on compound formation of varying degrees of negative non-additivity created by component size asymmetry and by size-tunable indentations in the polyhedra’s facets, intended to allow the nestling of neighboring spheres. Our results indicate that the stabilization of the compound crystal requires a relatively large degree of negative non-additivity, which depends on particle geometry and the packing of the relevant phases. It is found that negative non-additivity can be achieved in mixtures of large spheres and small cubes having no indentations and lead to the athermal crystallization of the NaCl lattice. For similarly sized components, athermal congruent transitions are attainable and non-additivity can be generated through indentations, especially for the cubes + spheres system. Increasing indentation leads to lower phase coexistence free energy and pressure in the cubes + spheres system but has the opposite effect in the octahedra + spheres system. These results indicate a stronger stabilizing effect on the athermal compound phase by the cubes’ indentations, where a deeper nestling of the spheres leads to a denser compound phase and a larger reduction in the associated pressure-volume free-energy term.more » « less
-
Using a variety of synthetic protocols including hydrothermal and microwave-assisted methods, the morphology of as-prepared magnetite has been reliably altered as a means of probing the effect of facet variations upon the resulting electrochemical processes measured. In particular, motifs of magnetite, measuring ∼100 to 200 nm in diameter, were variously prepared in the form of cubes, spheres, octahedra, and plates, thereby affording the opportunity to preferentially expose either (111), (220), or (100) planes, depending on the geometry in question. We deliberately prepared these samples, characterized using XRD and SEM, in the absence of a carbonaceous surfactant to enhance their intrinsic electrochemical function. Herein, we present a direct electrochemical comparison of specifically modified shape morphologies possessing 3 different facets and their impact as electrode materials for Li-ion batteries. Our overall data suggest that the shapes exhibiting the largest deliverable capacities at various current densities incorporated the highest surface energy facets, such as exposed (220) planes in this study. The faceted nature of different morphologies highlighted a trend in electrochemistry of (220) > (111) > (100); moreover, the degree of aggregation and polydispersity in prepared samples were found to play key roles as well.more » « less
-
Abstract Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties.more » « less
An official website of the United States government
