skip to main content


Title: Distinct Bimetallic Cooperativity Among Water Reduction Catalysts Containing [Co III Co III ], [Ni II Ni II ], and [Zn II Zn II ] Cores
Abstract

Three binuclear species [LCoIII2(μ‐Pz)2](ClO4)3(1), [LNiII2(CH3OH)2Cl2]ClO4(2), and [LZnII2Cl2]PF6(3) supported by the deprotonated form of the ligand 2,6‐bis[bis(2‐pyridylmethyl) amino‐methyl]‐4‐methylphenol were synthesized, structurally characterized as solids and in solution, and had their electrochemical and spectroscopic behavior established. Species13had their water reduction ability studied aiming to interrogate the possible cooperative catalytic activity between two neighboring metal centers. Species1and2reduced H2O to H2effectively at an applied potential of −1.6 VAg/AgCl, yielding turnover numbers of 2,820 and 2,290, respectively, after 30 minutes. Species3lacked activity and was used as a negative control to eliminate the possibility of ligand‐based catalysis. Pre‐ and post‐catalytic data gave evidence of the molecular nature of the process within the timeframe of the experiments. Species1showed structural, rather than electronic cooperativity, while species2displayed no obvious cooperativity. DFT methods complemented the experimental results determining plausible mechanisms.

 
more » « less
NSF-PAR ID:
10446992
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
23
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.

     
    more » « less
  2. Abstract

    A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry.

     
    more » « less
  3. Abstract

    Three new polynuclear clusters with the formulae [Mn10O4(OH)(OMe){(py)2C(O)2}2{(py)2C(OMe)(O)}4(MeCO2)6](ClO4)2(1), Na[Mn12O2(OH)3(OMe){(py)2C(O)2}6{(py)2C(OH)(O)}2(MeCO2)2(H2O)10](ClO4)8(2) and [Mn12O4(OH)2{(py)2C(O)2}6{(py)2C(OMe)(O)}(MeCO2)3(NO3)3(H2O)(DMF)2](NO3)2(3) were prepared from the combination of di‐2‐pyridyl ketone, (py)2CO, with the aliphatic diols (1,3‐propanediol (pdH2) or 1,4‐butanediol (1,4‐bdH2)) in Mn carboxylate chemistry. The reported compounds do not include the aliphatic diols employed in this reaction scheme; however, their use is essential for the formation of13. The crystal structures of13are based on multilayer cores which, to our knowledge, are reported for the first time in Mn cluster chemistry. Direct current (dc) magnetic susceptibility studies showed the presence of dominant antiferromagnetic exchange interactions within13. Alternating current (ac) magnetic susceptibility studies revealed the presence of out‐of‐phase signals below 3.0 K for2and3indicating the slow relaxation of the magnetization vector, characteristic of single‐molecule magnets; theUeffvalue of2was found to be 23 K and the preexponential factorτ0~7.6×10−9 s.

     
    more » « less
  4. Abstract

    In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+species results in the formation of [CoII4‐L)(OH2)]2+. Further reduction produces [CoI4‐L)(OH2)]+, which undergoes a rate‐limiting structural rearrangement to [CoI5‐L)]+before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+formation is similar for all complexes in the series. UsingE1/2values of various Co species and pKavalues of [CoIII−H]2+estimated from PR experiments, we found that while the protonation of [CoIII−H]2+is unfavorable, [CoII−H]+reacts with protons to produce H2. The catalytic activity for H2evolution tracks the hydricity of the [CoII−H]+intermediate.

     
    more » « less
  5. Abstract

    The description of π‐donor amido moieties as ‘weak‐field’ ligands can belie the influence of metal‐ligand covalency on the overall ligand field of coordination complexes, which can in turn influence properties including the magnetic ground state and those of their excited states. In this contribution, the ligand fields of pseudo‐octahedral Ni(II) complexes supported by diarylamido pincer‐type amido ligands – three previously reported examples supported by asymmetric (2‐R‐phenanthridin‐4‐yl)(8‐quinolinyl)amido ligands (R = Cl, CF3,tBu;RL1) along with a new congener bearing a symmetricbis(8‐quinolinyl)amido ligand (BQA;L2) – were investigated in two ways. First, high‐frequency and ‐field electron paramagnetic resonance spectroscopy (HFEPR), SQUID magnetometry, and electronic absorption spectroscopy were used to determine the ligand field parameters. Second, the ability to electrochemically address ligand‐based oxidations despite metal‐centered SOMOs in the parentS=1 paramagnets was investigated, supported by time‐dependent density functional theory (TDDFT) identification of strong intervalence charge‐transfer (IVCT) transitions attributed to electronic communication between two Namidomoieties mediated by a Ni(II) bridge. These findings are discussed in the broader context of 3d transition metal coordination complexes of weak‐field π‐donor ligands.

     
    more » « less