Abstract We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparameterize the system model and create an auxiliary model that can be identified from the non-uniform data. We show the identifiability of the auxiliary model using a Diophantine equation approach. Numerical examples demonstrate successful system reconstruction and the ability to capture fast system response with limited temporal feedback.
more »
« less
Least Squares Solution for System Identification with Non-uniform Data under a Coprime Collaborative Sensing Scheme
This paper presents a least squares formulation and a closed-form solution for identifying dynamical systems using irregular and sparse data obtained by chronologically merging measurements taken by multiple slow sensors of different sampling rates. We provide the theoretical foundation for developing advanced least-squares-based system identification algorithms for cases where the input-output data are asynchronous and/or scarce. Demonstrative examples are provided to validate the proposed method, and indicate the potential of removing the Nyquist sampling limitation in system identification. We provide in details how using 19 percent of the full measurements enables to capture the dynamics of a dynamic system when two slow sensors are collaboratively collecting the system response at different speeds. The required measurements can be further reduced under the proposed collaborative sensing scheme.
more »
« less
- PAR ID:
- 10447227
- Date Published:
- Journal Name:
- Proceedings of 2023 American Control Conference
- Page Range / eLocation ID:
- 1570 to 1575
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the problem of simultaneous parameter identification and mapping of a spatially distributed field using a mobile sensor network. We first develop a parametrized model that represents the spatially distributed field. Based on the model, a recursive least squares algorithm is developed to achieve online parameter identification. Next, we design a global state observer, which uses the estimated parameters, together with data collected by the mobile sensor network, to real-timely reconstruct the whole spatial-temporal varying field. Since the performance of the parameter identification and map reconstruction algorithms depends on the trajectories of the mobile sensors, we further develop a Lyapunov redesign based online trajectory planning algorithm for the mobile sensor network so that the mobile sensors can use local real-time information to guide them to move along information-rich paths that can improve the performance of the parameter identification and map construction. Lastly, a cooperative filtering scheme is developed to provide the state estimates of the spatially distributed field, which enables the recursive least squares method. To test the proposed algorithms in realistic scenarios, we first build a CO2 diffusion field in a lab and construct a sensor network to measure the field concentration over time. We then validate the algorithms in the reconstructed CO2 field in simulation. Simulation results demonstrate the efficiency of the proposed method.more » « less
-
Accurate knowledge of transmission line parameters is essential for a variety of power system monitoring, protection, and control applications. The use of phasor measurement unit (PMU) data for transmission line parameter estimation (TLPE) is well-documented. However, existing literature on PMU-based TLPE implicitly assumes the measurement noise to be Gaussian. Recently, it has been shown that the noise in PMU measurements (especially in the current phasors) is better represented by Gaussian mixture models (GMMs), i.e., the noises are non-Gaussian. We present a novel approach for TLPE that can handle non-Gaussian noise in the PMU measurements. The measurement noise is expressed as a GMM, whose components are identified using the expectation-maximization (EM) algorithm. Subsequently, noise and parameter estimation is carried out by solving a maximum likelihood estimation problem iteratively until convergence. The superior performance of the proposed approach over traditional approaches such as least squares and total least squares as well as the more recently proposed minimum total error entropy approach is demonstrated by performing simulations using the IEEE 118-bus system as well as proprietary PMU data obtained from a U.S. power utility.more » « less
-
Accurate knowledge of transmission line parameters is essential for a variety of power system monitoring, protection, and control applications. The use of phasor measurement unit (PMU) data for transmission line parameter estimation (TLPE) is well-documented. However, existing literature on PMU-based TLPE implicitly assumes the measurement noise to be Gaussian. Recently, it has been shown that the noise in PMU measurements (especially in the current phasors) is better represented by Gaussian mixture models (GMMs), i.e., the noises are non-Gaussian. We present a novel approach for TLPE that can handle non-Gaussian noise in the PMU measurements. The measurement noise is expressed as a GMM, whose components are identified using the expectation-maximization (EM) algorithm. Subsequently, noise and parameter estimation is carried out by solving a maximum likelihood estimation problem iteratively until convergence. The superior performance of the proposed approach over traditional approaches such as least squares and total least squares as well as the more recently proposed minimum total error entropy approach is demonstrated by performing simulations using the IEEE 118-bus system as well as proprietary PMU data obtained from a U.S. power utility.more » « less
-
This article presents an online parameter identification scheme for advection-diffusion processes using data collected by a mobile sensor network. The advection-diffusion equation is incorporated into the information dynamics associated with the trajectories of the mobile sensors. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensors so that the temporal variations in the field values can be estimated. This leads to a co-design scheme for state estimation and parameter identification for advection-diffusion processes that is different from comparable schemes using sensors installed at fixed spatial locations. Using state estimates from the constrained cooperative Kalman filter, a recursive least-square (RLS) algorithm is designed to estimate unknown model parameters of the advection-diffusion processes. Theoretical justifications are provided for the convergence of the proposed cooperative Kalman filter by deriving a set of sufficient conditions regarding the formation shape and the motion of the mobile sensor network. Simulation and experimental results show satisfactory performance and demonstrate the robustness of the algorithm under realistic uncertainties and disturbances.more » « less
An official website of the United States government

