- Award ID(s):
- 2010511
- PAR ID:
- 10447274
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 29
- Issue:
- 7
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We simulate the possibility of scaling channel formation to low density plasmas of low atomic number gas over a large range of pulse duration including (1) pulses up to 300 ps in duration, using inverse bremsstrahlung (IB) heating and (2) ultrashort pulses up to 100s of femtoseconds for generating tenuous plasmas of centimeter to meter lengths by optical field ionization (OFI). Results show IB heating up to tens of eV, and channels formed from an initial density of 1e18 cm-3 with axial densities as low as 1e17cm-3 and radius of 50 microns. It has been shown that centimeter-scale waveguides can be generated via OFI heating at densities of approximately 1e17 cm-3. Lastly, we outline the experimental setup to be used in future experiments at the University of Texas Tabletop Terawatt (UT3) facility.more » « less
-
Self-collimating spatially-variant lattices (SVLs) are integrated photonic devices that can be designed to steer optical beams in 3D within micron-scale volumes. SVLs can be fabricated by multi-photon lithography, and new routes to these and related devices are being explored based on modified Bessel beams.more » « less
-
Optical delay lines control the flow of light in time, introducing phase and group delays for engineering interferences and ultrashort pulses. Photonic integration of such optical delay lines is essential for chip-scale lightwave signal processing and pulse control. However, typical photonic delay lines based on long spiral waveguides require extensively large chip footprints, ranging from mm2to cm2scales. Here we present a scalable, high-density integrated delay line using a skin-depth engineered subwavelength grating waveguide, i.e., an extreme skin-depth (eskid) waveguide. The eskid waveguide suppresses the crosstalk between closely spaced waveguides, significantly saving the chip footprint area. Our eskid-based photonic delay line is easily scalable by increasing the number of turns and should improve the photonic chip integration density.
-
Abstract Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36–81 fb $$^{-1}$$ - 1 of proton–proton collision data with a centre-of-mass energy of $$\sqrt{s}=13$$ s = 13 $${\text {Te}}{\text {V}}$$ TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti- $$k_t$$ k t jet algorithm with radius parameter $$R=0.4$$ R = 0.4 is the primary jet definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets ( $$|\eta |<1.2$$ | η | < 1.2 ) vary from 1% for a wide range of high- $$p_{{\text {T}}}$$ p T jets ( $$250more » « less
2.5~{\text {Te}}{\text {V}}$$ > 2.5 TeV ). The relative jet energy resolution is measured and ranges from ( $$24 \pm 1.5$$ 24 ± 1.5 )% at 20 $${\text {Ge}}{\text {V}}$$ GeV to ( $$6 \pm 0.5$$ 6 ± 0.5 )% at 300 $${\text {Ge}}{\text {V}}$$ GeV . -
Pilat, Fulvia ; Fischer, Wolfram ; Saethre, Robert ; Anisimov, Petr ; Andrian, Ivan (Ed.)A large challenge with Plasma Wakefield Acceleration lies in creating a plasma with a profile and length that properly match the electron beam. Using a laser-ionized plasma source provides control in creating an appropriate plasma density ramp. Additionally, using a laser-ionized plasma allows for an accelerator to run at a higher repetition rate. At the Facility for Advanced Accelerator Experimental Tests, at SLAC National Accelerator Laboratory, we ionize hydrogen gas with a 225 mJ, 50 fs, 800 nm laser pulse that passes through an axicon lens, imparting a conical phase on the pulse that produces a focal spot with an intensity distribution described radially by a Bessel function. This paper overviews the diagnostic tests used to characterize and optimize the focal spot along the meter-long focus. In particular, we observe how wavefront aberrations in the laser pulse impact the peak intensity of the focal spot. Furthermore, we discuss the impact of nonlinear effects caused by a 6 mm, CaF2 vacuum window in the laser beam line.more » « less