Abstract The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat‐band superconductivity in twisted graphene bilayers, of higher‐order topological phases in twisted moiré superlattices, and of topological polaritons in twisted hyperbolic metasurfaces. These discoveries, at the foundations of the emergent field of twistronics, have so far been mostly limited to explorations in atomically thin condensed matter and photonic systems, with limitations on the degree of control over geometry and twist angle, and inherent challenges in the fabrication of carefully engineered stacked multilayers. Here, this work extends twistronics to widely reconfigurable macroscopic elastic metasurfaces consisting of LEGO pillar resonators. This work demonstrates highly tailored anisotropy over a single‐layer metasurface driven by variations in the twist angle between a pair of interleaved spatially modulated pillar lattices. The resulting quasi‐periodic moiré patterns support topological transitions in the isofrequency contours, leading to strong tunability of highly directional waves. The findings illustrate how the rich phenomena enabled by twistronics and moiré physics can be translated over a single‐layer metasurface platform, introducing a practical route toward the observation of extreme phenomena in a variety of wave systems, potentially applicable to both quantum and classical settings without multilayered fabrication requirements. 
                        more » 
                        « less   
                    
                            
                            Roadmap on structured waves
                        
                    
    
            Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g., for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10447276
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Optics
- ISSN:
- 2040-8978
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A discrete degree of freedom can be engineered to match the Hamiltonian of particles moving in a real-space lattice potential. Such synthetic dimensions are powerful tools for quantum simulation because of the control they offer and the ability to create configurations difficult to access in real space. Here, in an ultracold 84 Sr atom, we demonstrate a synthetic-dimension based on Rydberg levels coupled with millimeter waves. Tunneling amplitudes between synthetic lattice sites and on-site potentials are set by the millimeter-wave amplitudes and detunings respectively. Alternating weak and strong tunneling in a one-dimensional configuration realizes the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian, a paradigmatic model of topological matter. Band structure is probed through optical excitation from the ground state to Rydberg levels, revealing symmetry-protected topological edge states at zero energy. Edge-state energies are robust to perturbations of tunneling-rates that preserve chiral symmetry, but can be shifted by the introduction of on-site potentials.more » « less
- 
            aser Doppler vibrometry and wavefield analysis have recently shown great potential for nondestructive evaluation, structural health monitoring, and studying wave physics. However, there are limited studies on these approaches for viscoelastic soft materials, especially, very few studies on the laser Doppler vibrometer (LDV)-based acquisition of time–space wavefields of dispersive shear waves in viscoelastic materials and the analysis of these wavefields for characterizing shear wave dispersion and evaluating local viscoelastic property distributions. Therefore, this research focuses on developing a piezo stack-LDV system and shear wave time–space wavefield analysis methods for enabling the functions of characterizing the shear wave dispersion and the distributions of local viscoelastic material properties. Our system leverages a piezo stack to generate shear waves in viscoelastic materials and an LDV to acquire time–space wavefields. We introduced space-frequency-wavenumber analysis and least square regression-based dispersion comparison to analyze shear wave time–space wavefields and offer functions including extracting shear wave dispersion relations from wavefields and characterizing the spatial distributions of local wavenumbers and viscoelastic properties (e.g., shear elasticity and viscosity). Proof-of-concept experiments were performed using a synthetic gelatin phantom. The results show that our system can successfully generate shear waves and acquire time–space wavefields. They also prove that our wavefield analysis methods can reveal the shear wave dispersion relation and show the spatial distributions of local wavenumbers and viscoelastic properties. We expect this research to benefit engineering and biomedical research communities and inspire researchers interested in developing shear wave-based technologies for characterizing viscoelastic materials.more » « less
- 
            null (Ed.)Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.more » « less
- 
            Winding number is a topologically significant quantity that has found valuable applications in various areas of mathematical physics. Here, topological qubits are shown capable of formation from winding number superpositions and so of being used in the communication of quantum information in linear optical systems, the most common realm for quantum communication. In particular, it is shown that winding number qubits appear in several aspects of such systems, including quantum electromagnetic states of spin, momentum, orbital angular momentum, polarization of beams of particles propagating in free-space, optical fiber, beam splitters, and optical multiports.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    