Early identification of rotating machinery faults is crucial to avoid catastrophic failures upon installation. Contact-based vibration acquisition approaches are traditionally used for the purpose of machine health monitoring and end-of-line quality control. In complex working conditions, it can be difficult to perform an accurate accelerometer based vibration test. Acoustic signals (sound pressure and particle velocity) also contain important information about the operating state of mechanical equipment and can be used to detect different faults. A deep learning approach, namely one-dimensional Convolution Neural Networks (1D-CNN) can directly process raw time signals thereby eliminating the human dependance on fault feature extraction. An experimental research study is conducted to test the proposed 1D-CNN methodology on three different electric motor faults. The results from the study indicate that the fault detection performance from the new acoustic-based method is very effective and thus can be a good replacement to the conventional accelerometer-based methods for detection and diagnosis of mechanical faults in electric motors.
more »
« less
Feature-based statistical process monitoring for pressure swing adsorption processes
Pressure swing adsorption (PSA) is a widely used technology to separate a gas product from impurities in a variety of fields. Due to the complexity of PSA operations, process and instrument faults can occur at different parts and/or steps of the process. Thus, effective process monitoring is critical for ensuring efficient and safe operations of PSA systems. However, multi-bed PSA processes present several major challenges to process monitoring. First, a PSA process is operated in a periodic or cyclic fashion and never reaches a steady state; Second, the duration of different operation cycles is dynamically controlled in response to various disturbances, which results in a wide range of normal operation trajectories. Third, there is limited data for process monitoring, and bed pressure is usually the only measured variable for process monitoring. These key characteristics of the PSA operation make process monitoring, especially early fault detection, significantly more challenging than that for a continuous process operated at a steady state. To address these challenges, we propose a feature-based statistical process monitoring (SPM) framework for PSA processes, namely feature space monitoring (FSM). Through feature engineering and feature selection, we show that FSM can naturally handle the key challenges in PSA process monitoring and achieve early detection of subtle faults from a wide range of normal operating conditions. The performance of FSM is compared to the conventional SPM methods using both simulated and real faults from an industrial PSA process. The results demonstrate FSM’s superior performance in fault detection and fault diagnosis compared to the traditional SPM methods. In particular, the robust monitoring performance from FSM is achieved without any data preprocessing, trajectory alignment or synchronization required by the conventional SPM methods.
more »
« less
- Award ID(s):
- 1805950
- PAR ID:
- 10447283
- Date Published:
- Journal Name:
- Frontiers in Chemical Engineering
- Volume:
- 4
- ISSN:
- 2673-2718
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Predictive maintenance for underground high-pressure fluid-filled (HPFF) power cables remains a critical challenge due to the weak and intermittent nature of fault-induced signals and the limited accessibility of buried infrastructure. This paper proposes a physics-informed Seq2Seq-attentionautoencoder acoustic monitoring (Echo-AE) model for predictive maintenance in underground HPFF cable systems. The Echo-AE model is developed based on a physics-informed loss function that incorporates both physics-based constraints and prediction errors. A controlled experimental setup of underground HPFF cable systems was used to capture continuous acoustic monitoring data, where three fault severity levels were generated, resulting in 4 million acoustic samples spanning normal operations and 15 fault events, and producing an imbalanced dataset with a 117:1 normal-tofault ratio to simulate real-world scenarios in which early-stage faults are rare. Results demonstrated Echo-AE’s superior early-stage fault detection capability compared with traditional models, with an F1-score of 0.8313, precision of 0.7864, recall of 0.8816, and an accuracy of 0.9936. The model exhibits fast convergence (20 epochs) and an area under the receiver operating characteristic curve of 0.998. Threshold sensitivity analysis revealed an optimal operation point that balances false positives and false negatives.more » « less
-
Underground high-voltage transmission cables, especially high-pressure fluid-filled (HPFF) pipe-type cable systems, are critical components of urban power networks. These systems consist of insulated conductor cables housed within steel pipes filled with pressurized fluids that provide essential insulation and cooling. Despite their reliability, HPFF cables experience faults caused by insulation degradation, thermal expansion, and environmental stressors, which, due to their subtle and gradual nature, complicate incipient fault detection and subsequent fault localization. This study presents a novel, proactive, and retrofit-friendly predictive condition monitoring method. It leverages distributed accelerometer sensors non-intrusively mounted on the HPFF steel pipe within existing manholes to continuously monitor vibration signals in real time. A physics-enhanced convolutional neural network–long short-term memory (CNN–LSTM) deep learning architecture analyzes these signals to detect incipient faults before they evolve into critical failures. The CNN–LSTM model captures temporal dependencies in acoustic data streams, applying time-series analysis techniques tailored for the predictive condition monitoring of HPFF cables. Experimental validation uses vibration data from a scaled-down HPFF laboratory test setup, comparing normal operation to incipient fault events. The model reliably identifies subtle changes in sequential acoustic patterns indicative of incipient faults. Laboratory experimental results demonstrate a high accuracy of the physics-enhanced CNN–LSTM architecture for incipient fault detection with effective data feature extraction. This approach aims to support enhanced operational resilience and faster response times without intrusive infrastructure modifications, facilitating early intervention to mitigate service disruptions.more » « less
-
Faults in components (valves, sensors, etc.) of radiant floor heating and cooling systems affect the efficiency, cooling and heating capacity as well as the reliability of the system. While various fault detection and diagnostic (FDD) methods have been developed and tested for building systems, FDD algorithms for radiant heating and cooling systems have previously not been available. This paper presents an evolving learning-based FDD approach for a radiant floor heating and cooling system based on growing Gaussian mixture regression (GGMR). The experimental space was controlled with a building automation system (BAS) in which the operating conditions can be monitored, and control parameters can be overridden to desired values. Trend data for normal operation and faulty operation were collected. A total of six fault types with different severities in a radiant floor system were emulated through overriding control parameters. An FDD model based on the GGMR approach was developed with training data and the performance of the model was tested for "known" faults that were including in the training and new "unknown" faults that were implemented in the fault testing. The prediction accuracy for each known fault was extremely high with the lowest prediction accuracy of 98% for one of the faults. The algorithm was successful in detecting the new fault as an unknown state before evolving the model and in diagnosing it as a new fault after evolving the model.more » « less
-
Modern industrial processes are continuously monitored by a large number of sensors. Despite having access to large volumes of historical and online sensor data, industrial practitioners still face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we present a novel framework named "FARM" for Fast, Accurate, and Robust online process Monitoring. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike existing general-purpose process monitoring frameworks, FARM's unique hierarchical architecture decomposes process monitoring into two fault detection and diagnosis, each of which is conducted by targeted algorithms. Here, we test and validate the performance of our FARM monitoring framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art benchmark fault detection methods. In terms of fault classification diagnosis, we show that our modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, our modified SVM improves the fault classification accuracy significantly.more » « less
An official website of the United States government

