Early identification of rotating machinery faults is crucial to avoid catastrophic failures upon installation. Contact-based vibration acquisition approaches are traditionally used for the purpose of machine health monitoring and end-of-line quality control. In complex working conditions, it can be difficult to perform an accurate accelerometer based vibration test. Acoustic signals (sound pressure and particle velocity) also contain important information about the operating state of mechanical equipment and can be used to detect different faults. A deep learning approach, namely one-dimensional Convolution Neural Networks (1D-CNN) can directly process raw time signals thereby eliminating the human dependance on fault feature extraction. An experimental research study is conducted to test the proposed 1D-CNN methodology on three different electric motor faults. The results from the study indicate that the fault detection performance from the new acoustic-based method is very effective and thus can be a good replacement to the conventional accelerometer-based methods for detection and diagnosis of mechanical faults in electric motors.
more »
« less
Feature-based statistical process monitoring for pressure swing adsorption processes
Pressure swing adsorption (PSA) is a widely used technology to separate a gas product from impurities in a variety of fields. Due to the complexity of PSA operations, process and instrument faults can occur at different parts and/or steps of the process. Thus, effective process monitoring is critical for ensuring efficient and safe operations of PSA systems. However, multi-bed PSA processes present several major challenges to process monitoring. First, a PSA process is operated in a periodic or cyclic fashion and never reaches a steady state; Second, the duration of different operation cycles is dynamically controlled in response to various disturbances, which results in a wide range of normal operation trajectories. Third, there is limited data for process monitoring, and bed pressure is usually the only measured variable for process monitoring. These key characteristics of the PSA operation make process monitoring, especially early fault detection, significantly more challenging than that for a continuous process operated at a steady state. To address these challenges, we propose a feature-based statistical process monitoring (SPM) framework for PSA processes, namely feature space monitoring (FSM). Through feature engineering and feature selection, we show that FSM can naturally handle the key challenges in PSA process monitoring and achieve early detection of subtle faults from a wide range of normal operating conditions. The performance of FSM is compared to the conventional SPM methods using both simulated and real faults from an industrial PSA process. The results demonstrate FSM’s superior performance in fault detection and fault diagnosis compared to the traditional SPM methods. In particular, the robust monitoring performance from FSM is achieved without any data preprocessing, trajectory alignment or synchronization required by the conventional SPM methods.
more »
« less
- Award ID(s):
- 1805950
- PAR ID:
- 10447283
- Date Published:
- Journal Name:
- Frontiers in Chemical Engineering
- Volume:
- 4
- ISSN:
- 2673-2718
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Faults in components (valves, sensors, etc.) of radiant floor heating and cooling systems affect the efficiency, cooling and heating capacity as well as the reliability of the system. While various fault detection and diagnostic (FDD) methods have been developed and tested for building systems, FDD algorithms for radiant heating and cooling systems have previously not been available. This paper presents an evolving learning-based FDD approach for a radiant floor heating and cooling system based on growing Gaussian mixture regression (GGMR). The experimental space was controlled with a building automation system (BAS) in which the operating conditions can be monitored, and control parameters can be overridden to desired values. Trend data for normal operation and faulty operation were collected. A total of six fault types with different severities in a radiant floor system were emulated through overriding control parameters. An FDD model based on the GGMR approach was developed with training data and the performance of the model was tested for "known" faults that were including in the training and new "unknown" faults that were implemented in the fault testing. The prediction accuracy for each known fault was extremely high with the lowest prediction accuracy of 98% for one of the faults. The algorithm was successful in detecting the new fault as an unknown state before evolving the model and in diagnosing it as a new fault after evolving the model.more » « less
-
Modern industrial processes are continuously monitored by a large number of sensors. Despite having access to large volumes of historical and online sensor data, industrial practitioners still face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we present a novel framework named "FARM" for Fast, Accurate, and Robust online process Monitoring. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike existing general-purpose process monitoring frameworks, FARM's unique hierarchical architecture decomposes process monitoring into two fault detection and diagnosis, each of which is conducted by targeted algorithms. Here, we test and validate the performance of our FARM monitoring framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art benchmark fault detection methods. In terms of fault classification diagnosis, we show that our modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, our modified SVM improves the fault classification accuracy significantly.more » « less
-
We propose a novel methodology for fault detection and diagnosis in partially-observed Boolean dynamical systems (POBDS). These are stochastic, highly nonlinear, and derivative- less systems, rendering difficult the application of classical fault detection and diagnosis methods. The methodology comprises two main approaches. The first addresses the case when the normal mode of operation is known but not the fault modes. It applies an innovations filter (IF) to detect deviations from the nominal normal mode of operation. The second approach is applicable when the set of possible fault models is finite and known, in which case we employ a multiple model adaptive estimation (MMAE) approach based on a likelihood-ratio (LR) statistic. Unknown system parameters are estimated by an adaptive expectation- maximization (EM) algorithm. Particle filtering techniques are used to reduce the computational complexity in the case of systems with large state-spaces. The efficacy of the proposed methodology is demonstrated by numerical experiments with a large gene regulatory network (GRN) with stuck-at faults observed through a single noisy time series of RNA-seq gene expression measurements.more » « less
-
Abstract While preventive maintenance is crucial in wind turbine operation, conventional condition monitoring systems face limitations in terms of cost and complexity when compared to innovative signal processing techniques and artificial intelligence. In this paper, a cascading deep learning framework is proposed for the monitoring of generator winding conditions, specifically to promptly detect and identify inter-turn short circuit faults and estimate their severity in real time. This framework encompasses the processing of high-resolution current signal samples, coupled with the extraction of current signal features in both time and frequency domains, achieved through discrete wavelet transform. By leveraging long short-term memory recurrent neural networks, our aim is to establish a cost-efficient and reliable condition monitoring system for wind turbine generators. Numeral experiments show an over 97% accuracy for fault diagnosis and severity estimation. More specifically, with the intrinsic feature provided by wavelet transform, the faults can be 100% identified by the diagnosis model.more » « less
An official website of the United States government

