Abstract We synthesized the astrochemically relevant molecule 3-hydroxypropanal (HOCH2CH2CHO) and subsequently measured and analyzed its rotational spectrum in several frequency regions ranging from 130 to 485 GHz. We analyzed the ground vibrational state as well as the two perturbed lowest-lying vibrationally excited states. With the resulting rotational parameters, we searched for this molecule in the Sagittarius B2(N) and NGC 6334I hot cores, the IRAS 16293-2422B hot corino, and the G+0.693-0.027 and TMC-1 molecular clouds. Rotational emission of 3-hydroxypropanal was tentatively detected toward G+0.693-0.027, and a column density of (8.6 ±1.4) × 1012cm−2was determined. However, this molecule was not detected in the other sources that were investigated. The chemical implications of this tentative discovery are analyzed, and several potential chemical formation pathways of this species are discussed.
more »
« less
Implications of Electron Detachment in Associative Collisions of Atomic Oxygen Anion with Molecular Nitrogen for Modeling of Transient Luminous Events
Abstract Electron detachment from O−is important for understanding of lightning‐induced upper atmospheric discharges. Contrary to previous studies, Rayment and Moruzzi (1978) (RM78) argue that the associative detachment reaction of O−with N2proceeds with N2in its ground state. Here, we analyze the experimental setup in RM78 and demonstrate that vibrationally excited N2may have in fact contaminated the results, the theoretical approach in RM78 requires corrections, and the rate calculations provided in RM78 are inconsistent. As the vibrational temperature of N2remains relatively low in the initial stages of gas discharges in air, i.e., streamer formation, we conclude that if in fact vibrationally excited N2is required for the O− + N2→ N2O + e reaction to proceed, the process will happen only in later stages of the discharge, e.g., during streamer to leader transition. Controlled experiments are required to reconcile the literature on the reaction of O−with ground state N2.
more »
« less
- Award ID(s):
- 2010088
- PAR ID:
- 10447300
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.more » « less
-
Abstract Some bacterial heme proteins catalyze the coupling of two NO molecules to generate N2O. We previously reported that a heme Fe–NO model engages in this N−N bond‐forming reaction with NO. We now demonstrate that (OEP)CoII(NO) similarly reacts with 1 equiv of NO in the presence of the Lewis acids BX3(X=F, C6F5) to generate N2O. DFT calculations support retention of the CoIIoxidation state for the experimentally observed adduct (OEP)CoII(NO⋅BF3), the presumed hyponitrite intermediate (P.+)CoII(ONNO⋅BF3), and the porphyrin π‐radical cation by‐product of this reaction, and that the π‐radical cation formation likely occurs at the hyponitrite stage. In contrast, the Fe analogue undergoes a ferrous‐to‐ferric oxidation state conversion during this reaction. Our work shows that cobalt hemes are chemically competent to engage in the NO‐to‐N2O conversion reaction.more » « less
-
Context.Ever since they were first detected in the interstellar medium, the radio wavelength (3.3 GHz) hyperfine-structure splitting transitions in the rotational ground state of CH were observed to show anomalous excitation. Astonishingly, this behaviour was uniformly observed towards a variety of different sources probing a wide range of physical conditions. While the observed level inversion could be explained globally by a pumping scheme involving collisions, a description of the extent of ‘over-excitation’ observed in individual sources required the inclusion of radiative processes, involving transitions at higher rotational levels. Therefore, a complete description of the excitation mechanism in the CH ground state, observed towards individual sources entails observational constraints from the rotationally excited levels of CH and in particular that of its first rotationally excited state (2Π3/2,N= 1,J= 3/2). Aims.Given the limited detections of these lines, the objective of this work is to characterise the physical and excitation properties of the rotationally excited lines of CH between the Λ-doublet levels of its2Π3/2,N= 1,J= 3/2 state near 700 MHz, and investigate their influence on the pumping mechanisms of the ground-state lines of CH. Methods.This work presents the first interferometric search for the rotationally excited lines of CH between the Λ-doublet levels of its2Π3/2,N= 1,J= 3/2 state near 700 MHz carried out using the upgraded Giant Metrewave Radio Telescope (uGMRT) array towards six star-forming regions, W51 E, Sgr B2 (M), M8, M17, W43, and DR21 Main. Results.We detected the two main hyperfine structure lines within the first rotationally excited state of CH, in absorption towards W51 E. To jointly model the physical and excitation conditions traced by lines from both the ground and first rotationally excited states of CH, we performed non-local thermodynamic equilibrium (LTE) radiative transfer calculations using the code MOLPOP-CEP. These models account for the effects of line overlap and are aided by column density constraints from the far-infrared (FIR) wavelength rotational transitions of CH that connect to the ground state and use collisional rate coefficients for collisions of CH with H, H2and electrons (the latter was computed in this work using cross-sections estimated within the Born approximation). Conclusions.The non-LTE analysis revealed that physical properties typical of diffuse and translucent clouds best reproduced the higher rates of level inversion seen in the ground-state lines at 3.3 GHz, observed at velocities near 66 km s−1along the sightline towards W51 E. In contrast, the excited lines near 700 MHz were only excited in much denser environments withnH~ 105cm−3towards which the anomalous excitation in two of the three ground state lines is quenched, but not in the 3.264 GHz line. This is in alignment with our observations and suggests that while FIR pumping and line overlap effects are essential for exciting and producing line inversion in the ground state, excitation to the first rotational level is dominated by collisional excitation from the ground state. For the rotationally excited state of CH, the models indicated low excitation temperatures and column densities of 2 × 1014cm−2. Furthermore, modelling these lines helps us understand the complexities of the spectral features observed in the 532/536 GHz rotational transitions of CH. These transitions, connecting sub-levels of the first rotationally excited state to the ground state, play a crucial role in trapping FIR radiation and enhancing the degree of inversion seen in the ground state lines. Based on the physical conditions constrained, we predict the potential of detecting hyperfine-splitting transitions arising from higher rotationally excited transitions of CH in the context of their current non-detections.more » « less
-
Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da.more » « less
An official website of the United States government
