skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plot-scale (660 square centimeters) chamber fluxes of methane and soil moisture at thermokarst-mound sites in Alaska (2020-2023)
Plot-scale (660 square centimeters (cm2) measurements of methane (CH4) were made using a portable chamber system at North Star Yedoma (NSY), a grassland field in interior Alaska characterized by thermokarst (thaw) mounds forming due to degradation of ice-rich Yedoma, polygonal-ground permafrost soil and at 25 other extensive thermokarst-mound study sites in Alaskan tundra, boreal forest and grassland ecosystems. Measurements were made during summer, winter, and thaw seasons from March 2020 through March 2023. Soil temperature and moisture were measured in-situ with handheld probes on unfrozen soils. Thermokarst mounds are regularly spaced conical hills (≤15 meters (m) diameter, ≤5 m height) separated by trenches (≤3 m width) that form in degrading ice-rich Yedoma permafrost environments. Their formation and morphology are based on the melting of large syngenetic ice wedges in polygonal patterned ground, where the polygon margins (trenches) underlain by ice wedges subside faster and deeper than the less ice-rich polygon centers (mound tops), leaving behind distinct conical-mound features in regularly-spaced patterns. Thermokarst mounds are known to emit nitrous oxide [Marushchak et al. 2021, doi.org/10.1038/s41467-021-27386-2], but their carbon fluxes have until now remained largely uncharacterized. This data set characterizes thermokarst-mound methane fluxes in Alaska.  more » « less
Award ID(s):
1936752
PAR ID:
10519771
Author(s) / Creator(s):
;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
cryosphere permafrost talik thermokarst methane
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent excavation in the new CRREL Permafrost Tunnel in Fox, Alaska provides a unique opportunity to study properties of Yedoma — late Pleistocene ice- and organic-rich syngenetic permafrost. Yedoma has been described at numerous sites across Interior Alaska, mainly within the Yukon-Tanana upland. The most comprehensive data on the structure and properties of Yedoma in this area have been obtained in the CRREL Permafrost Tunnel near Fairbanks — one of the most accessible large-scale exposures of Yedoma permafrost on Earth, which became available to researchers in the mid-1960s. Expansion of the new ∼4-m-high and ∼4-m-wide linear excavations, started in 2011 and ongoing, exposes an additional 300 m of well-preserved Yedoma and provides access to sediments deposited over the past 40,000 years, which will allow us to quantify rates and patterns of formation of syngenetic permafrost, depositional history and biogeochemical characteristics of Yedoma, and its response to a warmer climate. In this paper, we present results of detailed cryostratigraphic studies in the Tunnel and adjacent area. Data from our study include ground-ice content, the stable water isotope composition of the variety of ground-ice bodies, and radiocarbon age dates. Based on cryostratigraphic mapping of the Tunnel and results of drilling above and inside the Tunnel, six main cryostratigraphic units have been distinguished: 1) active layer; 2) modern intermediate layer (ice-rich silt); 3) relatively ice-poor Yedoma silt reworked by thermal erosion and thermokarst during the Holocene; 4) ice-rich late Pleistocene Yedoma silt with large ice wedges; 5) relatively ice-poor fluvial gravel; and 6) ice-poor bedrock. Our studies reveal significant differences in cryostratigraphy of the new and old CRREL Permafrost Tunnel facilities. Original syngenetic permafrost in the new Tunnel has been better preserved and less affected by erosional events during the period of Yedoma formation, although numerous features (e.g., bodies of thermokarst-cave ice, thaw unconformities, buried gullies) indicate the original Yedoma silt in the recently excavated sections was also reworked to some extent by thermokarst and thermal erosion during the late Pleistocene and Holocene. 
    more » « less
  2. Abstract In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization. 
    more » « less
  3. ### Access Photos of ~50 permaforst boreholes and associated cores can be accessed and downloaded from the 'AR\_Fire\_Core_Photos' directory via: [https://arcticdata.io/data/10.18739/A2251FM9P/](https://arcticdata.io/data/10.18739/A2251FM9P/) ### Overview The Anaktuvuk River tundra fire burned more than 1,000 square kilometers of permafrost-affected arctic tundra in northern Alaska in 2007. The fire is the largest historical recorded tundra fire on the North Slope of Alaska. Fifty percent of the burn area is underlain by Yedoma permafrost that is characterized by extremely high ground-ice content of organic-rich, silty buried soils and the occurrence of large, syngenetic polygonal ice wedges. Given the high ground-ice content of this terrain, Yedoma is thought to be among the most vulnerable to fire-induced thermokarst in the Arctic. With this dataset, we update observations on near-surface permafrost in the Anaktuvuk River tundra fire burn area from 2009 to 2023 using repeat airborne LiDAR-derived elevation data, ground temperature measurements, and cryostratigraphic studies. We have provided all of the data that has gone into an analysis and resulting paper that has been submitted for peer review at the journal Scientific Reports. The datasets include: - 1 m spatial resolution airborne LiDAR-derived digital terrain models from the summers of 2009, 2014, and 2021. - The area in which thaw subsidence was detected in the multi-temporal LiDAR data using the Geomorphic Change Detection software. - A terrain unit map developed for the 50 square kilometer study area. - Ground temperature time series measurements for a logger located in the burned area and a logger located in an unburned area. The ground temperature data consist of daily mean measurements at a depth of 0.15 m (active layer) and 1.00 m (permafrost) from July 2009 to August 2023. - Photos ~50 permafrost boreholes and the associated cores collected there. - A borehole log and notes pdf also accompanies our studies on the cryostratigraphy of permafrost post-fire and our observations on the recovery of permafrost. 
    more » « less
  4. This dataset documents the occurrence, distribution, and characteristics of cryptic ice wedge networks in the Yukon-Kuskokwim Delta (YKD), Alaska. The dataset is derived from remote sensing analyses, field-based permafrost coring, ground-penetrating radar (GPR) surveys, and stable water isotope analyses. High-resolution aerial orthoimagery from 2018 enabled the identification of ~50 linear kilometers (km) of ice wedge trough networks within a 60 square kilometers (km²) study area near Bethel, Alaska, revealing ice wedge networks previously undocumented in the region. Fieldwork in 2023 and 2024 confirmed the presence of ice wedges up to 1.5 meter (m) wide and 2.5 m tall, with wedge tops averaging 0.9 m below the surface. GPR transects identified additional ice wedges beyond those visible in imagery, suggesting that remote sensing analyses may underestimate their true abundance. Coring of polygon centers revealed a suite of late-Quaternary deposits, including early Holocene peat, ice-rich late-Pleistocene permafrost (reworked Yedoma), charcoal layers indicating past tundra fires, and the Aniakchak CFE II tephra (~3,600 calendar years before present [cal yrs BP]). Stable water isotope analyses of wedge ice (mean δ¹⁸O = -15.7 ‰, δ²H = -113.1 ‰) indicate relatively enriched values compared to other Holocene ice wedges in Alaska, reflecting the region's warm maritime climate influence. Expanding the mapping analysis across the YKD using very high-resolution satellite imagery, we found that 95 % of observed ice wedge networks occur at elevations between 4 and 80 meters above sea level (m asl), predominantly within tundra vegetation classes. These areas, covering ~32 % of the YKD tundra region, may contain additional ice wedges, peat deposits, and relict Yedoma. This dataset provides a new framework for understanding the spatial distribution and environmental controls on ice wedge development in warm permafrost regions, with implications for permafrost resilience, climate change vulnerability, and land use planning in the YKD. 
    more » « less
  5. Ice-wedge polygon (IWP) is a landform found in landscapes underlain by permafrost. IWPs form due to the development of ice wedges, where each IWP is bounded by ice wedges. Ice wedges form due to repeated cracking of the soil during winter and by snowmelt water infiltrating into the cracks and freezing. Repeated over thousands of years, the process results in ice wedges several 10s of feet deep. The melting of the top of the ice wedge results in ground subsidence and depending how extensive the thaw is across the landscape, new ponds or lateral drainage channels form. This data collection supported an assessment of the length of the ice wedge network in the Barnard River watershed (10,540 km2), Banks Island, Canada. The data collection is derived from the pan-Arctic map of ice-wedge polygons (Witharana et al. 2023, Ice-wedge polygon detection in satellite imagery from pan-Arctic regions, Permafrost Discovery Gateway, 2001-2021. Arctic Data Center. doi:10.18739/A2KW57K57), which used Maxar satellite imagery from 2010-2020 for Banks Island. Two types of datasets are included: (1) Polyline shapefile of mapped ice wedge centerlines. This dataset was produced with an approach adopted from Ulrich, Mathias, et al. "Quantifying wedge‐ice volumes in Yedoma and thermokarst basin deposits." Permafrost and Periglacial Processes 25.3 (2014): 151-161. A buffer that represents widths at the top of ice wedges is created around each IWP. A buffer width of 5 meters was chosen, since this allowed buffers of adjacent polygons to overlap. These buffers are then skeletonized in order to trace their centerlines, which ultimately represents the network of ice-wedges that form the IWPs in a landscape. (2) Polygon shapefile of IWP coverage (as percentage of land cover within 1 kilometer (km) x 1 km rectangular grid cells) across the 10,540 km2 Bernard River Watershed, Banks Island, Canada. Code for ice-wedge centerline extraction can be found at https://github.com/PermafrostDiscoveryGateway/IW-Network-Extraction. This data collection accompanies the manuscript published in Nature Water (Liljedahl, A.K., Witharana, C., and Manos, E., 2024. The Capillaries of the Arctic Tundra. Nature Water, doi:10.1038/s44221-024-00276-9) and the geospatial data is available to view in the Permafrost Discovery Gateway. 
    more » « less