Abstract Despite recent advances in polyelectrolyte systems, designing responsive hydrogel interfaces to meet application requirements still proves challenging. Here, semicrystalline colloidal gels composed of poly(methacrylamide‐co‐methacrylic acid) are investigated in water with storage moduli in the MPa range. A combination of SEM, X‐ray scattering, and NMR reveals the evolution of the colloidal microstructure, crystallinity, and hydrogen bonding with varying monomer ratio. The gels with the finest colloidal microstructure exhibit the most dissipative rheological behavior and are selected for the study of their interfacial characteristics and underlying interactions. Microstructure stabilization and dynamics results from short‐range (attractive) hydrogen bonding and hydrophobic forces, and long‐range (repulsive) electrostatic interactions—the “SALR” pair potential. Further, the gel's surface exhibits a submicron colloidal topography that greatly determines (colloidal‐like) friction as a result of the viscoelastic deformation of the colloidal network, while electrostatic near‐surface interactions propagate in lamellar adhesion. The dynamic and reversible nature of the involved interactions introduces a stimulus responsive behavior that enables the electrotunability of adhesion and friction. This study advances the knowledge necessary to design complex hydrogel interfaces that enable spatial and dynamic control of surface properties, which is of relevance for applications in biomedical devices, soft tissue design, soft robotics, and other engineered tribosystems. 
                        more » 
                        « less   
                    
                            
                            Charge‐Induced Structural Changes of Confined Copolymer Hydrogels for Controlled Surface Morphology, Rheological Response, Adhesion, and Friction
                        
                    
    
            Abstract The ability to modulate polyacrylamide hydrogel surface morphology, rheological properties, adhesion and frictional response is demonstrated by combining acrylic acid copolymerization and network confinement via grafting to a surface. Specifically, atomic force microscopy imaging reveals both micellar and lamellar microphase separations in grafted copolymer hydrogels. Bulk characterization is conducted to reveal the mechanisms underlying microstructural changes and ordering of the polymer network, supporting that they stem from the balance between hydrogen bonding in the substrate‐grafted hydrogels, electrostatic interactions, and a decrease in osmotically active charges. The morphological modulation has direct impacts on the spatial distribution of surface stiffness and adhesion. Furthermore, lateral force measurements show that the microphase separations lead to speed and load‐dependent lubrication regimes as well as spatial variation of friction. A proof of concept via salt screening demonstrates the dynamic control of surface morphology and adhesion. This work advances the knowledge necessary to design complex hydrogel interfaces that enable spatial and dynamic control of surface morphology and thereby of friction and adhesion through modulation of hydrogel composition and surface confinement, which is of significance for applications in biomedical devices, soft tissue design, soft robotics, and other engineered tribosystems. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10447441
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 10
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hydrogel adhesion that can be easily modulated in magnitude, space, and time is desirable in many emerging applications ranging from tissue engineering and soft robotics to wearable devices. In synthetic materials, these complex adhesion behaviors are often achieved individually with mechanisms and apparatus that are difficult to integrate. Here, we report a universal strategy to embody multifaceted adhesion programmability in synthetic hydrogels. By designing the surface network topology of a hydrogel, supramolecular linkages that result in contrasting adhesion behaviors are formed on the hydrogel interface. The incorporation of different topological linkages leads to dynamically tunable adhesion with high-resolution spatial programmability without alteration of bulk mechanics and chemistry. Further, the association of linkages enables stable and tunable adhesion kinetics that can be tailored to suit different applications. We rationalize the physics of polymer chain slippage, rupture, and diffusion at play in the emergence of the programmable behaviors. With the understanding, we design and fabricate various soft devices such as smart wound patches, fluidic channels, drug-eluting devices, and reconfigurable soft robotics. Our study presents a simple and robust platform in which adhesion controllability in multiple aspects can be easily integrated into a single design of a hydrogel network.more » « less
- 
            Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.more » « less
- 
            Abstract Charged double network (DN) hydrogels are widely studied for their desirable mechanical strength and tunable properties. In this work, the influence of polymer concentration on microstructure and properties of agarose/polyacrylic acid DN hydrogels is studied. Agarose, the first network, is a brittle biopolymer, while polyacrylic acid (PAAc) is a weak polyelectrolyte. The microstructure, visualized in liquid environment, displays an agarose scaffold coated and interconnected by PAAc, deviating from the common assumption of an entangled double network. Importantly, the charging of PAAc in the hydrogel is regulated not only by the pH and weak polyelectrolyte effects, but also by the restricted swelling of the double network, and hence, it is an inherent regulation mechanism of charged hydrogels. The interactions between the hydrogel and the ionic environment induce microstructural changes and charging of the double network, impacting surface properties such as topography, stiffness, and adhesion, which are spatially resolved by liquid‐environment atomic force microscopy. The responsiveness of the DN hydrogels significantly depends on both polymer concentrations and ion concentrations. These findings provide insights into the responsive behavior of double network hydrogels and reveal universal mechanisms for charged hydrogels, which can guide the future development of functional soft materials.more » « less
- 
            null (Ed.)Since their inception, hydrogels have gained popularity among multiple fields, most significantly in biomedical research and industry. Due to their resemblance to biological tribosystems, a significant amount of research has been conducted on hydrogels to elucidate biolubrication mechanisms and their possible applications as replacement materials. This review is focused on lubrication mechanisms and covers friction models that have attempted to quantify the complex frictional characteristics of hydrogels. From models developed on the basis of polymer physics to the concept of hydration lubrication, assumptions and conditions for their applicability are discussed. Based on previous models and our own experimental findings, we propose the viscous-adhesive model for hydrogel friction. This model accounts for the effects of confinement of the polymer network provided by a solid surface and poroelastic relaxation as well as the (non) Newtonian shear of a complex fluid on the frictional force and quantifies the frictional response of hydrogels-solid interfaces. Finally, the review delineates potential areas of future research based on the current knowledge.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
