skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Constraining the Date of a Seasonally Ice‐Free Arctic Using a Simple Model
Abstract State‐of‐the‐art climate models simulate a large spread in the projected decline of Arctic sea‐ice area (SIA) over the 21st century. Here we diagnose causes of this intermodel spread using a simple model that approximates future SIA based on present SIA and the sensitivity of SIA to Arctic temperatures. This model accounts for 70%–95% of the intermodel variance, with the majority of the spread arising from present‐day biases. The remaining spread arises from intermodel differences in Arctic warming, with some contribution from differences in the local sea‐ice sensitivity. Using observations to constrain the projections moves the probability of an ice‐free Arctic forward by 10–35 years when compared to unconstrained projections. Under a high‐emissions scenario, an ice‐free Arctic will likely (66% probability) occur between 2036 and 2056 in September and between 2050 and 2068 from July to October. Under a medium‐emissions scenario, the “likely” date occurs between 2040 and 2062 in September and much later in the 21st century from July to October.  more » « less
Award ID(s):
1643445 1929775
PAR ID:
10447457
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The recent Arctic sea ice loss is a key driver of the amplified surface warming in the northern high latitudes, and simultaneously a major source of uncertainty in model projections of Arctic climate change. Previous work has shown that the spread in model predictions of future Arctic amplification (AA) can be traced back to the inter-model spread in simulated long-term sea ice loss. We demonstrate that the strength of future AA is further linked to the current climate’s, observable sea ice state across the multi-model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). The implication is that the sea-ice climatology sets the stage for long-term changes through the 21st century, which mediate the degree by which Arctic warming is amplified with respect to global warming. We determine that a lower base-climate sea ice extent and sea ice concentration (SIC) in CMIP6 models enable stronger ice melt in both future climate and during the seasonal cycle. In particular, models with lower Arctic-mean SIC project stronger future ice loss and a more intense seasonal cycle in ice melt and growth. Both processes systemically link to a larger future AA across climate models. These results are manifested by the role of climate feedbacks that have been widely identified as major drivers of AA. We show in particular that models with low base-climate SIC predict a systematically stronger warming contribution through both sea-ice albedo feedback and temperature feedbacks in the future, as compared to models with high SIC. From our derived linear regressions in conjunction with observations, we estimate a 21st-century AA over sea ice of 2.47–3.34 with respect to global warming. Lastly, from the tight relationship between base-climate SIC and the projected timing of an ice-free September, we predict a seasonally ice-free Arctic by mid-century under a high-emission scenario. 
    more » « less
  2. Abstract We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area, a behavior that had not been previously seen in CESM simulations. Differences in climate sensitivity and higher levels of atmospheric CO2by 2100 in the CMIP6 high emissions scenario compared to its CMIP5 analog could explain why this winter ice loss was not previously simulated by the CESM. 
    more » « less
  3. null (Ed.)
    The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near- surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near- surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread. 
    more » « less
  4. Under rising atmospheric greenhouse gas concentrations, the Arctic exhibits amplified warming relative to the globe. This Arctic amplification is a defining feature of global warming. However, the Arctic is also home to large internal variability, which can make the detection of a forced climate response difficult. Here we use results from seven model large ensembles, which have different rates of Arctic warming and sea ice loss, to assess the time of emergence of anthropogenically-forced Arctic amplification. We find that this time of emergence occurs at the turn of the century in all models, ranging across the models by a decade from 1994–2005. We also assess transient changes in this amplified signal across the 21st century and beyond. Over the 21st century, the projections indicate that the maximum Arctic warming will transition from fall to winter due to sea ice reductions that extend further into the fall. Additionally, the magnitude of the annual amplification signal declines over the 21st century associated in part with a weakening albedo feedback strength. In a simulation that extends to the 23rd century, we find that as sea ice cover is completely lost, there is little further reduction in the surface albedo and Arctic amplification saturates at a level that is reduced from its 21st century value. 
    more » « less
  5. This dataset contains the daily Arctic sea ice area (SIA) and sea ice extent (SIE) data for all CMIP6 models and the historical period based on the NOAA/NSIDC Climate Data Record (CDR) created for Heuzé and Jahn, The first ice-free day in the Arctic Ocean could occur before 2030, accepted, Nature Communications. This is a derived dataset based on publicly available underlying data: - For the CMIP6 data, the SIA and SIE data included here is based on the daily siconc and siconca CMIP6 model output freely available on the CMIP6 data portals (https://pcmdi.llnl.gov/CMIP6/). These pan-Arctic daily SIA and SIE were calculated north of 30N, on each model's native grid, using each models grid area data (areacello or areacella). SIA was defined as sea ice concentration multiplied by the grid cell area and summed over all grid cells. SIE was defined as the sum of the grid cell area for all grid cells where the sea ice concentration was larger than 0.15. All processed SIA and SIE data is included in this dataset, even if the model was later excluded from the analysis for one reason or another (see Heuzé and Jahn 2024, Methods section). All data included has the same number of days as the underlying model. The historical data spans 1980-2014 and can be found in the CMIP6_historical_data.zip file, and the scenario data spans 2015 to the end of the 21st century simulation, for multiple scenarios (SSPs), and can be found in CMIP6_ssp_data.zip. Files are provided as .zip files to make it easy to download all data at once, as the SIA and SIE data is saved in one file per model and ensemble member, and for the scenario simulations, also per ssp. - For the NOAA/NSIDC Climate Data Record (CDR), the SIA and SIE data included here is based on the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4, doi:10.7265/efmz-2t65, Meier et al 2021. The sea ice concentration is multiplied by the grid size of each grid box, for this data, 25x25 kilometers (km) = 625 kilometers squared (km2), and then summed over the full domain. In doing that, we include the interpolated data in the pole hole as included in the sea ice concentration data, but exclude all land/coastal grid points (i.e., values > 2.5 in the underlying data). As the filename indicates, we removed all leap year data from this data (dropped every Feb 29th) so that all years have 365 days. Note that while the file name says this data is for 19790101 to 20231231, it does indeed include 1978 as first year (so 1978-01-01-2023-12-31), with daily data starting on 1978-10-25 (nan before then). We did not change the name of the data file to still allow all archived scripts using this datafile to run. Scripts that work on this data associated with Heuzé and Jahn (2024) can be found at: https://zenodo.org/records/14008665, doi:10.5281/zenodo.14006059 References: Meier, W. N., F. Fetterer, A. K. Windnagel, and S. Stewart. 2021. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65 
    more » « less