skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CMIP6 Models Underestimate Arctic Sea Ice Loss during the Early Twentieth-Century Warming, despite Simulating Large Low-Frequency Sea Ice Variability
Abstract The variability of Arctic sea ice extent (SIE) on interannual and multidecadal time scales is examined in 29 models with historical forcing participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and in twentieth-century sea ice reconstructions. Results show that during the historical period with low external forcing (1850–1919), CMIP6 models display relatively good agreement in their representation of interannual sea ice variability (IVSIE) but exhibit pronounced intermodel spread in multidecadal sea ice variability (MVSIE), which is overestimated with respect to sea ice reconstructions and is dominated by model uncertainty in sea ice simulation in the subpolar North Atlantic. We find that this is associated with differences in models’ sensitivity to Northern Hemispheric sea surface temperatures (SSTs). Additionally, we show that while CMIP6 models are generally capable of simulating multidecadal changes in Arctic sea ice from the mid-twentieth century to present day, they tend to underestimate the observed sea ice decline during the early twentieth-century warming (ETCW; 1915–45). These results suggest the need for an improved characterization of the sea ice response to multidecadal climate variability in order to address the sources of model bias and reduce the uncertainty in future projections arising from intermodel spread. Significance StatementThe credibility of Arctic sea ice predictions depends on whether climate models are capable of reproducing changes in the past climate, including patterns of sea ice variability which can mask or amplify the response to global warming. This study aims to better understand how latest-generation global climate models simulate interannual and multidecadal variability of Arctic sea ice relative to available observations. We find that models differ in their representation of multidecadal sea ice variability, which is overall larger than in observations. Additionally, models underestimate the sea ice decline during the period of observed warming between 1915 and 1945. Our results suggest that, to achieve better predictions of Arctic sea ice, the realism of low-frequency sea ice variability in models should be improved.  more » « less
Award ID(s):
2213988
PAR ID:
10554254
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
23
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 6305-6321
Size(s):
p. 6305-6321
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PIOMAS-20C, an Arctic sea ice reconstruction for 1901–2010, is produced by forcing the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) with ERA-20C atmospheric data. ERA-20C performance over Arctic sea ice is assessed by comparisons with measurements and data from other reanalyses. ERA-20C performs similarly with respect to the annual cycle of downwelling radiation, air temperature, and wind speed compared to reanalyses with more extensive data assimilation such as ERA-Interim and MERRA. PIOMAS-20C sea ice thickness and volume are then compared with in situ and aircraft remote sensing observations for the period of ~1950–2010. Error statistics are similar to those for PIOMAS. We compare the magnitude and patterns of sea ice variability between the first half of the twentieth century (1901–40) and the more recent period (1980–2010), both marked by sea ice decline in the Arctic. The first period contains the so-called early-twentieth-century warming (ETCW; ~1920–40) during which the Atlantic sector saw a significant decline in sea ice volume, but the Pacific sector did not. The sea ice decline over the 1979–2010 period is pan-Arctic and 6 times larger than the net decline during the 1901–40 period. Sea ice volume trends reconstructed solely from surface temperature anomalies are smaller than PIOMAS-20C, suggesting that mechanisms other than warming, such as changes in ice motion and deformation, played a significant role in determining sea ice volume trends during both periods. 
    more » « less
  2. Abstract The recent Arctic sea ice loss is a key driver of the amplified surface warming in the northern high latitudes, and simultaneously a major source of uncertainty in model projections of Arctic climate change. Previous work has shown that the spread in model predictions of future Arctic amplification (AA) can be traced back to the inter-model spread in simulated long-term sea ice loss. We demonstrate that the strength of future AA is further linked to the current climate’s, observable sea ice state across the multi-model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). The implication is that the sea-ice climatology sets the stage for long-term changes through the 21st century, which mediate the degree by which Arctic warming is amplified with respect to global warming. We determine that a lower base-climate sea ice extent and sea ice concentration (SIC) in CMIP6 models enable stronger ice melt in both future climate and during the seasonal cycle. In particular, models with lower Arctic-mean SIC project stronger future ice loss and a more intense seasonal cycle in ice melt and growth. Both processes systemically link to a larger future AA across climate models. These results are manifested by the role of climate feedbacks that have been widely identified as major drivers of AA. We show in particular that models with low base-climate SIC predict a systematically stronger warming contribution through both sea-ice albedo feedback and temperature feedbacks in the future, as compared to models with high SIC. From our derived linear regressions in conjunction with observations, we estimate a 21st-century AA over sea ice of 2.47–3.34 with respect to global warming. Lastly, from the tight relationship between base-climate SIC and the projected timing of an ice-free September, we predict a seasonally ice-free Arctic by mid-century under a high-emission scenario. 
    more » « less
  3. Abstract State‐of‐the‐art climate models simulate a large spread in the projected decline of Arctic sea‐ice area (SIA) over the 21st century. Here we diagnose causes of this intermodel spread using a simple model that approximates future SIA based on present SIA and the sensitivity of SIA to Arctic temperatures. This model accounts for 70%–95% of the intermodel variance, with the majority of the spread arising from present‐day biases. The remaining spread arises from intermodel differences in Arctic warming, with some contribution from differences in the local sea‐ice sensitivity. Using observations to constrain the projections moves the probability of an ice‐free Arctic forward by 10–35 years when compared to unconstrained projections. Under a high‐emissions scenario, an ice‐free Arctic will likely (66% probability) occur between 2036 and 2056 in September and between 2050 and 2068 from July to October. Under a medium‐emissions scenario, the “likely” date occurs between 2040 and 2062 in September and much later in the 21st century from July to October. 
    more » « less
  4. Changes in Arctic sea ice since the middle of the last century are explored in this study. Both observations and climate model simulations show an overall sea ice expansion during 1953–1970 but a general sea ice decline afterward. Anthropogenic aerosols, nature forcing and atmospheric ozone changes are found to contribute to the sea ice expansion in the early period. Their effects are strong generally in late boreal summer. On the other hand, greenhouse gas warming has a dominant effect on diminishing Arctic sea ice cover during 1971–2005, especially in September. Internal climate variability also plays a role in the Arctic sea ice change during 1953–1970. However, it cannot solely explain the Arctic sea ice decline since the 1970s. 
    more » « less
  5. null (Ed.)
    The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near- surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near- surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread. 
    more » « less