skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modular ontology modeling
Reusing ontologies for new purposes, or adapting them to new use-cases, is frequently difficult. In our experiences, we have found this to be the case for several reasons: (i) differing representational granularity in ontologies and in use-cases, (ii) lacking conceptual clarity in potentially reusable ontologies, (iii) lack and difficulty of adherence to good modeling principles, and (iv) a lack of reuse emphasis and process support available in ontology engineering tooling. In order to address these concerns, we have developed the Modular Ontology Modeling (MOMo) methodology, and its supporting tooling infrastructure, CoModIDE (the Comprehensive Modular Ontology IDE – “commodity”). MOMo builds on the established eXtreme Design methodology, and like it emphasizes modular development and design pattern reuse; but crucially adds the extensive use of graphical schema diagrams, and tooling that support them, as vehicles for knowledge elicitation from experts. In this paper, we present the MOMo workflow in detail, and describe several useful resources for executing it. In particular, we provide a thorough and rigorous evaluation of CoModIDE in its role of supporting the MOMo methodology’s graphical modeling paradigm. We find that CoModIDE significantly improves approachability of such a paradigm, and that it displays a high usability.  more » « less
Award ID(s):
2033521
PAR ID:
10447648
Author(s) / Creator(s):
; ;
Editor(s):
Kirrane, Sabrina; Ngonga Ngomo, Axel-Cyrille; Kirrane, Sabrina; Ngonga Ngomo, Axel-Cyrille
Date Published:
Journal Name:
Semantic Web
Volume:
14
Issue:
3
ISSN:
1570-0844
Page Range / eLocation ID:
459 to 489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Use and reuse of an ontology requires prior ontology verification which encompasses, at least, proving that the ontology is internally consistent and consistent with representative datasets. First-order logic (FOL) model finders are among the only available tools to aid us in this undertaking, but proving consistency of FOL ontologies is theoretically intractable while also rarely succeeding in practice, with FOL model finders scaling even worse than FOL theorem provers. This issue is further exacerbated when verifying FOL ontologies against datasets, which requires constructing models with larger domain sizes. This paper presents a first systematic study of the general feasibility of SAT-based model finding with FOL ontologies. We use select spatial ontologies and carefully controlled synthetic datasets to identify key measures that determine the size and difficulty of the resulting SAT problems. We experimentally show that these measures are closely correlated with the runtimes of Vampire and Paradox, two state-of-the-art model finders. We propose a definition elimination technique and demonstrate that it can be a highly effective measure for reducing the problem size and improving the runtime and scalability of model finding. 
    more » « less
  2. null (Ed.)
    While OWL and RDF are by far the most popular logic-based languages for Semantic Web Ontologies, some well-designed ontologies are only available in languages with a much richer expressivity, such as first-order logic (FOL) or the ISO standard Common Logic. This inhibits reuse of these ontologies by the wider Semantic Web Community. While converting OWL ontologies to FOL is straightforward, the reverse problem of finding the closest OWL approximation of an FOL ontology is undecidable. However, for most practical purposes, a ``good enough'' OWL approximation need not be perfect to enable wider reuse by the Semantic Web Community. This paper outlines such a conversion approach by first normalizing FOL sentences into a function-free prenex conjunctive normal (FF-PCNF) that strips away minor syntactic differences and then applying a pattern-based approach to identify common OWL axioms. It is tested on the over 2,000 FOL ontologies from the Common Logic Ontology Repository. 
    more » « less
  3. Common pitfalls in visualization projects include lack of data availability and the domain users' needs and focus changing too rapidly for the design process to complete. While it is often prudent to avoid such projects, we argue it can be beneficial to engage them in some cases as the visualization process can help refine data collection, solving a “chicken and egg” problem of having the data and tools to analyze it. We found this to be the case in the domain of task parallel computing where such data and tooling is an open area of research. Despite these hurdles, we conducted a design study. Through a tightly-coupled iterative design process, we built Atria, a multi-view execution graph visualization to support performance analysis. Atria simplifies the initial representation of the execution graph by aggregating nodes as related to their line of code. We deployed Atria on multiple platforms, some requiring design alteration. We describe how we adapted the design study methodology to the “moving target” of both the data and the domain experts' concerns and how this movement kept both the visualization and programming project healthy. We reflect on our process and discuss what factors allow the project to be successful in the presence of changing data and user needs. 
    more » « less
  4. Abstract The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multi-species anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to (1) use controlled vocabularies and create semi-automated computer-parsable insect morphological descriptions; (2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and (3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies. 
    more » « less
  5. The Drosophila brain has only a fraction of the number of neurons of higher organisms such as mice and humans. Yet the sheer complexity of its neural circuits recently revealed by large connectomics datasets suggests that computationally modeling the function of fruit fly brain circuits at this scale poses significant challenges. To address these challenges, we present here a programmable ontology that expands the scope of the current Drosophila brain anatomy ontologies to encompass the functional logic of the fly brain. The programmable ontology provides a language not only for modeling circuit motifs but also for programmatically exploring their functional logic. To achieve this goal, we tightly integrated the programmable ontology with the workflow of the interactive FlyBrainLab computing platform. As part of the programmable ontology, we developed NeuroNLP++, a web application that supports free-form English queries for constructing functional brain circuits fully anchored on the available connectome/synaptome datasets, and the published worldwide literature. In addition, we present a methodology for including a model of the space of odorants into the programmable ontology, and for modeling olfactory sensory circuits of the antenna of the fruit fly brain that detect odorant sources. Furthermore, we describe a methodology for modeling the functional logic of the antennal lobe circuit consisting of a massive number of local feedback loops, a characteristic feature observed across Drosophila brain regions. Finally, using a circuit library, we demonstrate the power of our methodology for interactively exploring the functional logic of the massive number of feedback loops in the antennal lobe. 
    more » « less