Periodically harvested closures are a widespread, centuries‐old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo‐Pacific. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade‐off between periodic closures that maximized harvest efficiency and no‐take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to ≤18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures.
- Award ID(s):
- 1645643
- NSF-PAR ID:
- 10447685
- Date Published:
- Journal Name:
- Canadian Journal of Fisheries and Aquatic Sciences
- Volume:
- 80
- ISSN:
- 0706-652X
- Page Range / eLocation ID:
- 893-912
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis and applications . We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no‐take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well‐managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems. -
Abstract The role of spatial management, including marine protected areas, in achieving fisheries outcomes alongside conservation goals is debated. In fisheries that fail to meet fishing mortality targets, closed areas are sometimes implemented to reduce fishing mortality. However, fisheries with stronger management, including rights‐based approaches that can address overcapacity and overfishing problems, often employ spatial management as well. Here, we compare the objectives, design, and performance of spatial management in nine temperate demersal fisheries in North America, Oceania, Europe, and Africa that employ rights‐based systems. Common objectives of spatial management included protecting habitat, juveniles, and spawners and reducing discards. Recovering age structure and creating scientific reference sites were less common objectives, despite being widely cited benefits of spatial management. Some fisheries adopted single closures to achieve single objectives, whereas others adopted diverse networks to achieve multiple objectives. Importantly, many spatial protections are implemented primarily through industry initiatives. Environmental change compromised the efficacy of spatial management in some cases, suggesting the need to design spatial management systems that are robust to changing ocean conditions. Fisheries with diverse and extensive spatial management systems have generally healthier fish stocks. Whether this implies that spatial management contributed substantially to fishery performance is unclear due to an absence of large‐scale, long‐term studies aimed at discerning different drivers of success. Although these targeted monitoring studies of closed areas are limited, such studies are necessary to help resolve the ongoing debate and to enable more purposeful design of spatial management for fisheries and conservation.
-
Real-time spatial management in fisheries, a type of dynamic ocean management, uses nearly real-time data collection and dissemination to reduce susceptibility of certain species or age classes to being caught in mixed fisheries. However, as with many fisheries regulations, it is difficult to assess whether such a regulation can produce tangible results on population dynamics. In this study, we take advantage of a rare opportunity in which data regarding real-time closures (RTCs) are available for 1990–2014 alongside annual estimates of fishing mortality for three species (Atlantic cod, haddock, and herring) and catch for four species (all plus saithe) in Icelandic fisheries management. We use time series analyses to assess whether RTCs work as expected and yield a lower susceptibility of small fish to being caught, indicated by lower catch levels and selectivities (as estimated from fishing mortalities) in years with more closures. Results indicate that haddock and herring followed this pattern, but only under conditions of generally high fishing mortality. This study represents the first time evidence has been presented that real-time fishery closures can have a beneficial effect on population dynamics, but also suggests that results differ among species.more » « less
-
Abstract Rotational closures have potential fisheries benefits, yet their impact on coral cover is unknown. Research has shown that permanent closures can protect herbivorous fish, indirectly benefiting corals, but these observations may not apply when closed periods alternate with fishing. Here, we examine how rotational closures affect coral, focusing on systems with the potential to switch between alternative stable states, a context in which temporary closures may have persistent effects. We show that rotational closures can trigger coral recovery, and in some contexts lead to better coral recovery than fixed closures of similar size. Such benthic effects are only possible if closures last long enough for change to occur. We also note that very large fixed or rotating closures may concentrate fishing effort in areas where fishing remains permitted, leading to lower overall coral cover. Our findings offer crucial guidance to managers regarding rotational closures’ potential advantages and drawbacks.
-
Abstract Declining natural resources have contributed to a cultural renaissance across the Pacific that seeks to revive customary ridge‐to‐reef management approaches to protect freshwater and restore abundant coral reef fisheries. We applied a linked land–sea modeling framework based on remote sensing and empirical data, which couples groundwater nutrient export and coral reef models at fine spatial resolution. This spatially explicit (60 × 60 m) framework simultaneously tracks changes in multiple benthic and fish indicators as a function of community‐led marine closures, land‐use and climate change scenarios. We applied this framework in Hā‘ena and Ka‘ūpūlehu, located at opposite ends of the Hawaiian Archipelago to investigate the effects of coastal development and marine closures on coral reefs in the face of climate change. Our results indicated that projected coastal development and bleaching can result in a significant decrease in benthic habitat quality and community‐led marine closures can result in a significant increase in fish biomass. In general, Ka‘ūpūlehu is more vulnerable to land‐based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power, except for the shallow and wave‐sheltered back‐reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes. By coupling spatially explicit land–sea models with scenario planning, we identified priority areas on land where upgrading cesspools can reduce human impacts on coral reefs in the face of projected climate change impacts.