skip to main content


Search for: All records

Award ID contains: 2106988

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper deals with the convergence of the Doi-Navier-Stokes model of liquid crystals to the Ericksen-Leslie model in the limit of the Deborah number tending to zero. While the literature has investigated this problem by means of the Hilbert expansion method, we develop the moment method, i.e. a method that exploits conservation relations obeyed by the collision operator. These are non-classical conservation relations which are associated with a new concept, that of Generalized Collision Invariant (GCI). In this paper, we develop the GCI concept and relate it to geometrical and analytical structures of the collision operator. Then, the derivation of the limit model using the GCI is performed in an arbitrary number of spatial dimensions and with non-constant and non-uniform polymer density. This non-uniformity generates new terms in the Ericksen-Leslie model.

     
    more » « less
  2. This paper investigates the global existence of weak solutions for the incompressible \begin{document}$ p $\end{document}-Navier-Stokes equations in \begin{document}$ \mathbb{R}^d $\end{document} \begin{document}$ (2\leq d\leq p) $\end{document}. The \begin{document}$ p $\end{document}-Navier-Stokes equations are obtained by adding viscosity term to the \begin{document}$ p $\end{document}-Euler equations. The diffusion added is represented by the \begin{document}$ p $\end{document}-Laplacian of velocity and the \begin{document}$ p $\end{document}-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-\begin{document}$ p $\end{document} distances with constraint density to be characteristic functions.

     
    more » « less
  3. In the mean field integrate-and-fire model, the dynamics of a typical neuronwithin a large network is modeled as a diffusion-jump stochastic process whosejump takes place once the voltage reaches a threshold. In this work, the maingoal is to establish the convergence relationship between the regularizedprocess and the original one where in the regularized process, the jumpmechanism is replaced by a Poisson dynamic, and jump intensity within theclassically forbidden domain goes to infinity as the regularization parametervanishes. On the macroscopic level, the Fokker-Planck equation for the processwith random discharges (i.e. Poisson jumps) are defined on the whole space,while the equation for the limit process is on the half space. However, withthe iteration scheme, the difficulty due to the domain differences has beengreatly mitigated and the convergence for the stochastic process and the firingrates can be established. Moreover, we find a polynomial-order convergence forthe distribution by a re-normalization argument in probability theory. Finally,by numerical experiments, we quantitatively explore the rate and the asymptoticbehavior of the convergence for both linear and nonlinear models. 
    more » « less