skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ActiveHedge: Hedge meets Active Learning. ICML 2022: 11694-11709
We consider the classical problem of multi-class prediction with expert advice, but with an active learning twist. In this new setting the learner will only query the labels of a small number of examples, but still aims to minimize regret to the best expert as usual; the learner is also allowed a very short "burn-in" phase where it can fast-forward and query certain highly-informative examples. We design an algorithm that utilizes Hedge (aka Exponential Weights) as a subroutine, and we show that under a very particular combinatorial constraint on the matrix of expert predictions we can obtain a very strong regret guarantee while querying very few labels. This constraint, which we refer to as ζ -compactness, or just compactness, can be viewed as a non-stochastic variant of the disagreement coefficient, another popular parameter used to reason about the sample complexity of active learning in the IID setting. We also give a polynomial-time algorithm to calculate the ζ -compactness of a matrix up to an approximation factor of 3.  more » « less
Award ID(s):
1955981 2007350
PAR ID:
10447723
Author(s) / Creator(s):
Date Published:
Journal Name:
ICML
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How can we collect the most useful labels to learn a model selection policy, when presented with arbitrary heterogeneous data streams? In this paper, we formulate this task as a contextual active model selection problem, where at each round the learner receives an unlabeled data point along with a context. The goal is to output the best model for any given context without obtaining an excessive amount of labels. In particular, we focus on the task of selecting pre-trained classifiers, and propose a contextual active model selection algorithm (CAMS), which relies on a novel uncertainty sampling query criterion defined on a given policy class for adaptive model selection. In comparison to prior art, our algorithm does not assume a globally optimal model. We provide rigorous theoretical analysis for the regret and query complexity under both adversarial and stochastic settings. Our experiments on several benchmark classification datasets demonstrate the algorithm’s effectiveness in terms of both regret and query complexity. Notably, to achieve the same accuracy, CAMS incurs less than 10% of the label cost when compared to the best online model selection baselines on CIFAR10. 
    more » « less
  2. Active learning identifies data points from a pool of unlabeled examples whose labels, if made available, are most likely to improve the predictions of a supervised model. Most research on active learning assumes that an agent has access to the entire pool of unlabeled data and can ask for labels of any data points during an initial training phase. However, when incorporated in a larger task, an agent may only be able to query some subset of the unlabeled pool. An agent can also opportunistically query for labels that may be useful in the future, even if they are not immediately relevant. In this paper, we demonstrate that this type of opportunistic active learning can improve performance in grounding natural language descriptions of everyday objects---an important skill for home and office robots. We find, with a real robot in an object identification setting, that inquisitive behavior---asking users important questions about the meanings of words that may be off-topic for the current dialog---leads to identifying the correct object more often over time. 
    more » « less
  3. The goal of active learning is to achieve the same accuracy achievable by passive learning, while using much fewer labels. Exponential savings in terms of label complexity have been proved in very special cases, but fundamental lower bounds show that such improvements are impossible in general. This suggests a need to explore alternative goals for active learning. Learning with abstention is one such alternative. In this setting, the active learning algorithm may abstain from prediction and incur an error that is marginally smaller than random guessing. We develop the first computationally efficient active learning algorithm with abstention. Our algorithm provably achieves p o l y l o g ( 1 ε ) label complexity, without any low noise conditions. Such performance guarantee reduces the label complexity by an exponential factor, relative to passive learning and active learning that is not allowed to abstain. Furthermore, our algorithm is guaranteed to only abstain on hard examples (where the true label distribution is close to a fair coin), a novel property we term \emph{proper abstention} that also leads to a host of other desirable characteristics (e.g., recovering minimax guarantees in the standard setting, and avoiding the undesirable noise-seeking'' behavior often seen in active learning). We also provide novel extensions of our algorithm that achieve \emph{constant} label complexity and deal with model misspecification. 
    more » « less
  4. We study the problem of active learning with the added twist that the learner is assisted by a helpful teacher. We consider the following natural interaction protocol: At each round, the learner proposes a query asking for the label of an instance xq, the teacher provides the requested label {xq,yq} along with explanatory information to guide the learning process. In this paper, we view this information in the form of an additional contrastive example ({xc,yc}) where xc is picked from a set constrained by xq (e.g., dissimilar instances with the same label). Our focus is to design a teaching algorithm that can provide an informative sequence of contrastive examples to the learner to speed up the learning process. We show that this leads to a challenging sequence optimization problem where the algorithm's choices at a given round depend on the history of interactions. We investigate an efficient teaching algorithm that adaptively picks these contrastive examples. We derive strong performance guarantees for our algorithm based on two problem-dependent parameters and further show that for specific types of active learners (e.g., a generalized binary search learner), the proposed teaching algorithm exhibits strong approximation guarantees. Finally, we illustrate our bounds and demonstrate the effectiveness of our teaching framework via two numerical case studies. 
    more » « less
  5. While training models and labeling data are resource-intensive, a wealth of pre-trained models and unlabeled data exists. To effectively utilize these resources, we present an approach to actively select pre-trained models while minimizing labeling costs. We frame this as an online contextual active model selection problem: At each round, the learner receives an unlabeled data point as a context. The objective is to adaptively select the best model to make a prediction while limiting label requests. To tackle this problem, we propose CAMS, a contextual active model selection algorithm that relies on two novel components: (1) a contextual model selection mechanism, which leverages context information to make informed decisions about which model is likely to perform best for a given context, and (2) an active query component, which strategically chooses when to request labels for data points, minimizing the overall labeling cost. We provide rigorous theoretical analysis for the regret and query complexity under both adversarial and stochastic settings. Furthermore, we demonstrate the effectiveness of our algorithm on a diverse collection of benchmark classification tasks. Notably, CAMS requires substantially less labeling effort (less than 10%) compared to existing methods on CIFAR10 and DRIFT benchmarks, while achieving similar or better accuracy. 
    more » « less