Deep neural networks have great representation power, but typically require large numbers of training examples. This motivates deep active learning methods that can significantly reduce the amount of labeled training data. Empirical successes of deep active learning have been recently reported in the literature, however, rigorous label complexity guarantees of deep active learning have remained elusive. This constitutes a significant gap between theory and practice. This paper tackles this gap by providing the first near-optimal label complexity guarantees for deep active learning. The key insight is to study deep active learning from the nonparametric classification perspective. Under standard low noise conditions, we show that active learning with neural networks can provably achieve the minimax label complexity, up to disagreement coefficient and other logarithmic terms. When equipped with an abstention option, we further develop an efficient deep active learning algorithm that achieves label complexity, without any low noise assumptions. We also provide extensions of our results beyond the commonly studied Sobolev/H\"older spaces and develop label complexity guarantees for learning in Radon spaces, which have recently been proposed as natural function spaces associated with neural networks.
more »
« less
Efficient Active Learning with Abstention
The goal of active learning is to achieve the same accuracy achievable by passive learning, while using much fewer labels. Exponential savings in terms of label complexity have been proved in very special cases, but fundamental lower bounds show that such improvements are impossible in general. This suggests a need to explore alternative goals for active learning. Learning with abstention is one such alternative. In this setting, the active learning algorithm may abstain from prediction and incur an error that is marginally smaller than random guessing. We develop the first computationally efficient active learning algorithm with abstention. Our algorithm provably achieves p o l y l o g ( 1 ε ) label complexity, without any low noise conditions. Such performance guarantee reduces the label complexity by an exponential factor, relative to passive learning and active learning that is not allowed to abstain. Furthermore, our algorithm is guaranteed to only abstain on hard examples (where the true label distribution is close to a fair coin), a novel property we term \emph{proper abstention} that also leads to a host of other desirable characteristics (e.g., recovering minimax guarantees in the standard setting, and avoiding the undesirable noise-seeking'' behavior often seen in active learning). We also provide novel extensions of our algorithm that achieve \emph{constant} label complexity and deal with model misspecification.
more »
« less
- Award ID(s):
- 2023239
- PAR ID:
- 10533131
- Publisher / Repository:
- Advances in Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $$\log \frac{1}{\eps}$$ rather than $$\poly(1/\eps)$$ labels to get error $$\eps$$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $$\eps$$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms.more » « less
-
We consider the problem of offline reinforcement learning (RL) -- a well-motivated setting of RL that aims at policy optimization using only historical data. Despite its wide applicability, theoretical understandings of offline RL, such as its optimal sample complexity, remain largely open even in basic settings such as \emph{tabular} Markov Decision Processes (MDPs). In this paper, we propose Off-Policy Double Variance Reduction (OPDVR), a new variance reduction based algorithm for offline RL. Our main result shows that OPDVR provably identifies an ϵ-optimal policy with O˜(H2/dmϵ2) episodes of offline data in the finite-horizon stationary transition setting, where H is the horizon length and dm is the minimal marginal state-action distribution induced by the behavior policy. This improves over the best known upper bound by a factor of H. Moreover, we establish an information-theoretic lower bound of Ω(H2/dmϵ2) which certifies that OPDVR is optimal up to logarithmic factors. Lastly, we show that OPDVR also achieves rate-optimal sample complexity under alternative settings such as the finite-horizon MDPs with non-stationary transitions and the infinite horizon MDPs with discounted rewards.more » « less
-
We study active learning methods for single index models of the form $$F({\bm x}) = f(\langle {\bm w}, {\bm x}\rangle)$$, where $$f:\mathbb{R} \to \mathbb{R}$$ and $${\bx,\bm w} \in \mathbb{R}^d$$. In addition to their theoretical interest as simple examples of non-linear neural networks, single index models have received significant recent attention due to applications in scientific machine learning like surrogate modeling for partial differential equations (PDEs). Such applications require sample-efficient active learning methods that are robust to adversarial noise. I.e., that work even in the challenging agnostic learning setting. We provide two main results on agnostic active learning of single index models. First, when $$f$$ is known and Lipschitz, we show that $$\tilde{O}(d)$$ samples collected via {statistical leverage score sampling} are sufficient to learn a near-optimal single index model. Leverage score sampling is simple to implement, efficient, and already widely used for actively learning linear models. Our result requires no assumptions on the data distribution, is optimal up to log factors, and improves quadratically on a recent $${O}(d^{2})$$ bound of \cite{gajjar2023active}. Second, we show that $$\tilde{O}(d)$$ samples suffice even in the more difficult setting when $$f$$ is \emph{unknown}. Our results leverage tools from high dimensional probability, including Dudley's inequality and dual Sudakov minoration, as well as a novel, distribution-aware discretization of the class of Lipschitz functions.more » « less
-
We study the generalization of two-layer ReLU neural networks in a univariate nonparametric regression problem with noisy labels. This is a problem where kernels (\emph{e.g.} NTK) are provably sub-optimal and benign overfitting does not happen, thus disqualifying existing theory for interpolating (0-loss, global optimal) solutions. We present a new theory of generalization for local minima that gradient descent with a constant learning rate can \emph{stably} converge to. We show that gradient descent with a fixed learning rate η can only find local minima that represent smooth functions with a certain weighted \emph{first order total variation} bounded by 1/η−1/2+O˜(σ+MSE‾‾‾‾‾√) where σ is the label noise level, MSE is short for mean squared error against the ground truth, and O˜(⋅) hides a logarithmic factor. Under mild assumptions, we also prove a nearly-optimal MSE bound of O˜(n−4/5) within the strict interior of the support of the n data points. Our theoretical results are validated by extensive simulation that demonstrates large learning rate training induces sparse linear spline fits. To the best of our knowledge, we are the first to obtain generalization bound via minima stability in the non-interpolation case and the first to show ReLU NNs without regularization can achieve near-optimal rates in nonparametric regression.more » « less
An official website of the United States government

