Abstract The Oligocene to Present Wrangell Volcanic Belt (WVB) extends for ~500 km across south‐central Alaska (USA) into Canada at a volcanic arc‐transform junction. Previously, geochemistry documented mantle wedge and slab‐edge melting in <12 MaWVBvolcanic rocks; new geochemistry shows that the same processes characterized ~18–30 MaWVBmagmatism in Alaska. New40Ar/39Ar ages demonstrate thatWVBmagmatism in Alaska initiated at ~30 Ma due to flat‐slab subduction of the Yakutat microplate and that the dextral Totschunda fault was active at this time. Our results, together with prior studies, show that AlaskanWVBmagmatism occurred chiefly due to subduction and should be considered a volcanic arc (e.g. the Wrangell Arc). TheWVBprovides a long‐term geological record of subduction, strike‐slip and magmatism. Slab‐edge upwelling, flat‐slab defocused fluid‐flux and faults acting as magma conduits are likely responsible for the exceptionally large volcanoes and high eruption rates of the Wrangell Arc.
more »
« less
Timescale of Short‐Term Subduction Episodicity in Convection Models With Grain Damage: Applications to Archean Tectonics
Abstract The style of subduction that prevailed on the early Earth, or even whether subduction was prevalent at all, is an important question in the evolution of Earth's crust, mantle, and surface environment. Here, two‐dimensional numerical convection models, that include grain size evolution to generate weak plate boundaries, reveal a clear transition in subduction behavior with increasing internal heating rate. Sustained subduction with a coherent slab gives way to a style where slabs periodically detach and sink rapidly into the deep mantle, with increasing internal heating rate. In this latter, “drip‐like” subduction regime, repeating cycles of slab growth by subduction, followed by necking and detachment of the lower portion of the slab, are seen. These cycles are termed “slab detachment cycles,” and similar behavior has been seen in regional scale subduction models of the early Earth. Fourier analysis is used to constrain the timescale of slab detachment cycles, and a simple scaling law for this timescale is developed. Applying the scaling law to the early Earth indicates that slab detachment cycles can occur on timescales of <10 Myr, even as low as <5 Myr if the lithosphere is thick and mantle temperature is>1900 K. These cycles may thus be capable of explaining repeating sequences of rocks with “arc” and “non‐arc” signatures seen in some Archean cratons. The drip‐like subduction regime could also have significant implications for the generation of the tonalite‐trondhjemite‐granodiorite (TTG) suite of rocks and exhumation of high pressure metamorphic rocks, two important features of the early Earth geologic record.
more »
« less
- Award ID(s):
- 1723057
- PAR ID:
- 10447739
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 125
- Issue:
- 12
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dependence of planetary tectonics on mantle thermal state: Applications to early Earth evolutionFor plate tectonics to operate on a planet, mantle convective forces must be capable of forming weak, localized shear zones in the lithosphere that act as plate boundaries. Otherwise, a planet's mantle will convect in a stagnant lid regime, where subduction and plate motions are absent. Thus, when and how plate tectonics initiated on Earth is intrinsically tied to the ability of mantle convection to form plate boundaries; however, the physics behind this process are still uncertain. Most mantle convection models have employed a simple pseudoplastic model of the lithosphere, where the lithosphere "fails" and develops a mobile lid when stresses in the lithosphere reach the prescribed yield stress. With pseudoplasticity high mantle temperatures and high rates of internal heating, conditions relevant for the early Earth, impede plate boundary formation by decreasing lithospheric stresses, and hence favor a stagnant lid for the early Earth. However, when a model for shear zone formation based on grain size reduction is used, early Earth thermal conditions do not favor a stagnant lid. While lithosphere stress drops with increasing mantle temperature or heat production rate, the deformational work, which drives grain size reduction, increases. Thus the ability of convection to form weak plate boundaries is not impeded by early Earth thermal conditions. However, mantle thermal state does change the style of subduction and lithosphere mobility; high mantle temperatures lead to a more sluggish, drip-like style of subduction. This "sluggish lid" convection may be able to explain many of the key observations of early Earth crust formation processes preserved in the geologic record. Moreover, this work highlights the importance of understanding the microphysics of plate boundary formation for assessing early Earth tectonics, as different plate boundary formation mechanisms are influenced by mantle thermal state in fundamentally different ways.more » « less
-
In the current plate tectonic regime, thermal modeling, petrology, and seismology show that subsurface portions of cold slabs carry some of their volatiles into the deep upper mantle, mantle transition zone, and uppermost lower mantle avoiding the devolatilization occurring with normal arc and wedge subduction. Slab crustal remnants at these depths can melt by intersecting their carbonated solidus whereas slab mantle remnants can devolatilize by warming and metamorphosing to ‘dryer’ mineral assemblages. Since fluid release and earthquake production (“dehydration embrittlement”) operates down to ~300 km depths in all subduction zones, we propose, that deep-focus earthquakes trace the places of fluid release at deeper levels (350 to 750 km). Fluids in faults related to earthquake generation will become diamond-forming as they react with mantle rocks along the fault walls. Diamonds thus formed will record deformation produced by mantle convection and slab buckling during mantle storage. Lithospheric diamonds, stored in static ancient continental keels, lack the connection to this type of geodynamic regime that is evident for sublithospheric diamonds. However, a comparison between the two diamond types suggests a geologic model for lithospheric diamond formation in the ancient past. Lithospheric diamonds and sublithospheric diamonds both contain evidence for the recycling of sediments or surficial rocks that have equilibrated at low temperatures with seawater. The known way to inject these materials into diamond-forming regions is slab subduction. Hence both diamond types may have formed by variants of this same process that differ in depth and style over geologic time. Lithospheric diamonds are different from sublithospheric diamonds in critical ways: higher average N content, ages extending into the Paleoarchean, inclusion assemblages indicating formation at lower pressure, and lack of ubiquitous deformation features. Nitrogen content is the key to relating lithospheric diamonds to the subducting slab. Nitrogen occurs in clays and sediments at the slab surface or uppermost crust. Regardless of whether the slab is hot or cold during subduction, nitrogen will be removed into a mantle wedge if one exists. Additionally, diamonds will not survive in the melts/fluids generated in the wedge under oxidizing conditions. For sublithospheric diamonds, their low to non-existent nitrogen content occurs because they are derived from slab fluids/melts once nitrogen has been largely removed or from rocks deeper in the slab where nitrogen is scarce. The much higher nitrogen in lithospheric diamonds suggests that they formed from fluids/melts derived near the slab surface that contained N. In the Archean, such slabs must have subducted close to the nascent mantle keel with no mantle wedge so the fluids could be directly reduced by the mantle keel. We propose a gradual temporal change from shallow, keel-adjacent, mantle-wedge-poor subduction that produced lithospheric diamonds starting in the Paleoarchean to wedge-avoiding, cold and deep subduction that produced sublithospheric diamonds in the Paleozoic. This temporal change is consistent with many geologic features: an early stagnant lid and a buoyant Archean oceanic lithosphere; the slab-imbrication, advective thickening, and diamond-richness of portions of mantle keels; and anomalously diamond-rich ancient eclogites.more » « less
-
null (Ed.)Continental arcs in Cordilleran orogenic systems display episodic changes in magma production rate, alternating between flare ups (70–90 km3 km 1 Myr 1) and lulls (< 20 km3 km 1 Myr 1) on timescales of tens of millions of years. Arc segments or individual magmatic suites may have even higher rates, up several 100 s of km3 km 1 Myr 1, during flare ups. These rates are largely determined by estimating volumes of arc crust, but do not reflect melt production from the mantle. The bulk of mantle-derived magmas are recycled back into the mantle by delamination of arc roots after differentiation in the deep crust. Mantle-derived melt production rates for continental arcs are estimated to be 140–215 km3 km 1 Myr 1 during flare ups and ≤ 15 km3 km 1 Myr 1 during lulls. Melt production rates averaged over multiple magmatic cycles are consistent with independent estimates for partial melting of the mantle wedge in subduction zones, however, the rates during flare ups and lulls are both anomalously high and anomalously low, respectively. The difference in mantle-derived melt production between flare ups and lulls is larger than predicted by petrologic and numerical models that explore the range of globally observed subduction parameters (e.g., convergence rate, height of the mantle wedge). This suggests that other processes are required to increase magmatism during flare ups and suppress magmatism during lulls. There are many viable explanations, but one possibility is that crystallized melts from the asthenospheric mantle wedge are temporarily stored in the deep lithosphere during lulls and then remobilized during flare ups. Basaltic melts may stall in the mantle lithosphere in inactive parts of the arc system, like the back-arc, refertilizing the mantle lithosphere and suppressing melt delivery to the lower crust. Subsequent landward arc migration (i.e., toward the interior of the continent) may encounter such refertilized mantle lithosphere magma source regions, contributing to magmatic activity during a flare up. A review of continental arcs globally suggests that flare ups commonly coincide with landward arc migration and that this migration may start tens of millions of years before the flare up occurs. The region of magmatic activity, or arc width, can also expand significantly during a flare up. Arc migration or expansion into different mantle source regions and across lithospheric and crustal boundaries can cause temporal shifts in the radiogenic isotopic composition of magmatism. In the absence of arc migration, temporal shifts are more muted. Isotopic studies of mantle xenoliths and exposures of deep arc crust suggest that that primary, mantle-derived magmas generated during flare ups reflect substantial contributions from the subcontinental mantle lithosphere. Arc migration may be caused by a variety of mechanisms, including slab anchoring or slab folding in the mantle transition zone that could generate changes in slab dip. Episodic slab shallowing is associated with many tectonic processes in Cordilleran orogenic systems, like alternations between shortening and extension in the upper plate. Studies of arc migration may help to link irregular magmatic production in continental arcs with geodynamic models for orogenic cyclicity.more » « less
-
Abstract Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs.more » « less
An official website of the United States government
