Abstract The component black holes (BHs) observed in gravitational-wave (GW) binary black hole (BBH) events tend to be more massive and slower spinning than those observed in black hole X-ray binaries (BH-XRBs). Without modeling their evolutionary histories, we investigate whether these apparent tensions in the BH populations can be explained by GW observational selection effects alone. We find that this is indeed the case for the discrepancy between BH masses in BBHs and the observed high-mass X-ray binaries (HMXBs), when we account for statistical uncertainty from the small sample size of just three HMXBs. On the other hand, the BHs in observed low-mass X-ray binaries (LMXBs) are significantly lighter than the astrophysical BBH population, but this may just be due to a correlation between component masses in a binary system. Given their light stellar companions, we expect light BHs in LMXBs. The observed spins in HMXBs and LMXBs, however, are in tension with the inferred BBH spin distribution at the >99.9% level. We discuss possible scenarios behind the significantly larger spins in observed BH-XRBs. One possibility is that a small subpopulation (conservatively <30%) of BBHs have rapidly spinning primary components, indicating that they may have followed a similar evolutionary pathway to the observed HMXBs. In LMXBs, it has been suggested that BHs can spin up by accretion. If LMXB natal spins follow the BBH spin distribution, we find LMXBs must gain an average dimensionless spin of 0.47 − 0.11 + 0.10 , but if their natal spins follow the observed HMXB spins, the average spin-up must be <0.03.
more »
« less
Dropping Anchor: Understanding the Populations of Binary Black Holes with Random and Aligned-spin Orientations
Abstract The relative spin orientations of black holes (BHs) in binaries encode their evolutionary history: BHs assembled dynamically should have isotropically distributed spins, while spins of BHs originating in the field should be aligned with the orbital angular momentum. In this article, we introduce a simple population model for these dynamical and field binaries that uses spin orientations as an anchor to disentangle these two evolutionary channels. We then analyze binary BH mergers in the Third Gravitational-Wave Transient Catalog (GWTC-3) and ask whether BHs from the isotropic-spin population possess different distributions of mass ratios, spin magnitudes, or redshifts from the preferentially aligned-spin population. We find no compelling evidence that binary BHs in GWTC-3 have different source-property distributions depending on their spin alignment, but we do find that the dynamical and field channels cannot both have mass-ratio distributions that strongly favor equal masses. We give an example of how this can be used to provide insights into the various processes that drive these BHs to merge. We also find that the current detections are insufficient in extracting differences in spin magnitude or redshift distributions of isotropic and aligned-spin populations.
more »
« less
- Award ID(s):
- 2207945
- PAR ID:
- 10447747
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 946
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 50
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gravitational-wave observations provide the unique opportunity of studying black hole formation channels and histories—but only if we can identify their origin. One such formation mechanism is the dynamical synthesis of black hole binaries in dense stellar systems. Given the expected isotropic distribution of component spins of binary black holes in gas-free dynamical environments, the presence of antialigned or in-plane spins with respect to the orbital angular momentum is considered a tell-tale sign of a merger’s dynamical origin. Even in the scenario where birth spins of black holes are low, hierarchical mergers attain large component spins due to the orbital angular momentum of the prior merger. However, measuring such spin configurations is difficult. Here, we quantify the efficacy of the spin parameters encoding aligned-spin (χeff) and in-plane spin (χp) at classifying such hierarchical systems. Using Monte Carlo cluster simulations to generate a realistic distribution of hierarchical merger parameters from globular clusters, we can infer mergers’χeffandχp. The cluster populations are simulated using Advanced LIGO-Virgo sensitivity during the detector network’s third observing period and projections for design sensitivity. Using a “likelihood-ratio”-based statistic, we find that ∼2% of the recovered population by the current gravitational-wave detector network has a statistically significantχpmeasurement, whereas noχeffmeasurement was capable of confidently determining a system to be antialigned with the orbital angular momentum at current detector sensitivities. These results indicate that measuring spin-precession throughχpis a more detectable signature of hierarchical mergers and dynamical formation than antialigned spins.more » « less
-
Abstract We propose a Bayesian inference framework to predict the merger history of LIGO-Virgo binary black holes (BHs), whose binary components may have undergone hierarchical mergers in the past. The framework relies on numerical relativity predictions for the mass, spin, and kick velocity of the remnant BHs. This proposed framework computes the masses, spins, and kicks imparted to the remnant of the parent binaries, given the initial masses and spin magnitudes of the binary constituents. We validate our approach by performing an “injection study” based on a constructed sequence of hierarchically formed binaries. Noise is added to the final binary in the sequence, and the parameters of the “parent” and “grandparent” binaries in the merger chain are then reconstructed. This method is then applied to three GWTC-3 events: GW190521, GW200220_061928, and GW190426_190642. These events were selected because at least one of the binary companions lies in the putative pair-instability supernova mass gap, in which stellar processes alone cannot produce BHs. Hierarchical mergers offer a natural explanation for the formation of BHs in the pair-instability mass gap. We use the backward evolution framework to predict the parameters of the parents of the primary companion of these three binaries. For instance, the parent binary of GW190521 has masses and within the 90% credible interval. Astrophysical environments with escape speeds ≥100 km s−1are preferred sites to host these events. Our approach can be readily applied to future high-mass gravitational wave events to predict their formation history under the hierarchical merger assumption.more » « less
-
Abstract The observation of gravitational waves from multiple compact binary coalescences by the LIGO–Virgo–KAGRA detector networks has enabled us to infer the underlying distribution of compact binaries across a wide range of masses, spins, and redshifts. In light of the new features found in the mass spectrum of binary black holes and the uncertainty regarding binary formation models, nonparametric population inference has become increasingly popular. In this work, we develop a data-driven clustering framework that can identify features in the component mass distribution of compact binaries simultaneously with those in the corresponding redshift distribution, from gravitational-wave data in the presence of significant measurement uncertainties, while making very few assumptions about the functional form of these distributions. Our generalized model is capable of inferring correlations among various population properties, such as the redshift evolution of the shape of the mass distribution itself, in contrast to most existing nonparametric inference schemes. We test our model on simulated data and demonstrate the accuracy with which it can reconstruct the underlying distributions of component masses and redshifts. We also reanalyze public LIGO–Virgo–KAGRA data from events in GWTC-3 using our model and compare our results with those from some alternative parametric and nonparametric population inference approaches. Finally, we investigate the potential presence of correlations between mass and redshift in the population of binary black holes in GWTC-3 (those observed by the LIGO–Virgo–KAGRA detector network in their first three observing runs), without making any assumptions about the specific nature of these correlations.more » « less
-
Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5 M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 .more » « less
An official website of the United States government

