skip to main content


Title: Nonparametric Inference of the Population of Compact Binaries from Gravitational-wave Observations Using Binned Gaussian Processes
Abstract

The observation of gravitational waves from multiple compact binary coalescences by the LIGO–Virgo–KAGRA detector networks has enabled us to infer the underlying distribution of compact binaries across a wide range of masses, spins, and redshifts. In light of the new features found in the mass spectrum of binary black holes and the uncertainty regarding binary formation models, nonparametric population inference has become increasingly popular. In this work, we develop a data-driven clustering framework that can identify features in the component mass distribution of compact binaries simultaneously with those in the corresponding redshift distribution, from gravitational-wave data in the presence of significant measurement uncertainties, while making very few assumptions about the functional form of these distributions. Our generalized model is capable of inferring correlations among various population properties, such as the redshift evolution of the shape of the mass distribution itself, in contrast to most existing nonparametric inference schemes. We test our model on simulated data and demonstrate the accuracy with which it can reconstruct the underlying distributions of component masses and redshifts. We also reanalyze public LIGO–Virgo–KAGRA data from events in GWTC-3 using our model and compare our results with those from some alternative parametric and nonparametric population inference approaches. Finally, we investigate the potential presence of correlations between mass and redshift in the population of binary black holes in GWTC-3 (those observed by the LIGO–Virgo–KAGRA detector network in their first three observing runs), without making any assumptions about the specific nature of these correlations.

 
more » « less
NSF-PAR ID:
10470714
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
957
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 37
Size(s):
["Article No. 37"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H ( z ), including its current value, the Hubble constant H 0 . Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H ( z ). The source mass distribution displays a peak around 34 M ⊙ , followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H ( z ) measurement, yielding H 0 = 68 − 8 + 12 km s − 1 Mpc − 1 (68% credible interval) when combined with the H 0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H 0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+ , statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of H 0 = 68 − 6 + 8 km s − 1 Mpc − 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H 0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H 0 ) is the well-localized event GW190814. 
    more » « less
  2. Abstract

    The population-level distributions of the masses, spins, and redshifts of binary black holes (BBHs) observed using gravitational waves can shed light on how these systems form and evolve. Because of the complex astrophysical processes shaping the inferred BBH population, models allowing for correlations among these parameters will be necessary to fully characterize these sources. We hierarchically analyze the BBH population detected by LIGO and Virgo with a model allowing for correlations between the effective aligned spin and the primary mass and redshift. We find that the width of the effective spin distribution grows with redshift at 98.6% credibility. We determine this trend to be robust under the application of several alternative models and additionally verify that such a correlation is unlikely to be spuriously introduced using a simulated population. We discuss the possibility that this correlation could be due to a change in the natal black hole spin distribution with redshift.

     
    more » « less
  3. Context. The growing set of gravitational-wave sources is being used to measure the properties of the underlying astrophysical populations of compact objects, black holes, and neutron stars. Most of the detected systems are black hole binaries. While much has been learned about black holes by analyzing the latest LIGO-Virgo-KAGRA (LVK) catalog, GWTC-3, a measurement of the astrophysical distribution of the black hole spin orientations remains elusive. This is usually probed by measuring the cosine of the tilt angle (cos τ ) between each black hole spin and the orbital angular momentum, with cos τ  = +1 being perfect alignment. Aims. The LVK Collaboration has modeled the cos τ distribution as a mixture of an isotropic component and a Gaussian component with mean fixed at +1 and width measured from the data. We want to verify if the data require the existence of such a peak at cos τ  = +1. Methods. We used various alternative models for the astrophysical tilt distribution and measured their parameters using the LVK GWTC-3 catalog. Results. We find that (a) augmenting the LVK model, such that the mean μ of the Gaussian is not fixed at +1, returns results that strongly depend on priors. If we allow μ  >  +1, then the resulting astrophysical cos τ distribution peaks at +1 and looks linear, rather than Gaussian. If we constrain −1 ≤  μ  ≤ +1, the Gaussian component peaks at μ  = 0.48 −0.99 +0.46 (median and 90% symmetric credible interval). Two other two-component mixture models yield cos τ distributions that either have a broad peak centered at 0.19 −0.18 +0.22 or a plateau that spans the range [ − 0.5, +1], without a clear peak at +1. (b) All of the models we considered agree as to there being no excess of black hole tilts at around −1. (c) While yielding quite different posteriors, the models considered in this work have Bayesian evidences that are the same within error bars. Conclusions. We conclude that the current dataset is not sufficiently informative to draw any model-independent conclusions on the astrophysical distribution of spin tilts, except that there is no excess of spins with negatively aligned tilts. 
    more » « less
  4. Abstract

    We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below2.40.5+0.5M, which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at2.20.5+0.7Mand6.01.4+2.4M. We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compact binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.

     
    more » « less
  5. ABSTRACT

    The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.

     
    more » « less