ABSTRACT Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to be detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2.
more »
« less
Jetted and Turbulent Stellar Deaths: New LVK-detectable Gravitational-wave Sources
Abstract Upcoming LIGO–Virgo–KAGRA (LVK) observing runs are expected to detect a variety of inspiralling gravitational-wave (GW) events that come from black hole and neutron star binary mergers. Detection of noninspiral GW sources is also anticipated. We report the discovery of a new class of noninspiral GW sources—the end states of massive stars—that can produce the brightest simulated stochastic GW burst signal in the LVK bands known to date, and could be detectable in LVK run A+. Some dying massive stars launch bipolar relativistic jets, which inflate a turbulent energetic bubble—cocoon—inside of the star. We simulate such a system using state-of-the-art 3D general relativistic magnetohydrodynamic simulations and show that these cocoons emit quasi-isotropic GW emission in the LVK band, ∼10–100 Hz, over a characteristic jet activity timescale ∼10–100 s. Our first-principles simulations show that jets exhibit a wobbling behavior, in which case cocoon-powered GWs might be detected already in LVK run A+, but it is more likely that these GWs will be detected by the third-generation GW detectors with an estimated rate of ∼10 events yr −1 . The detection rate drops to ∼1% of that value if all jets were to feature a traditional axisymmetric structure instead of a wobble. Accompanied by electromagnetic emission from the energetic core-collapse supernova and the cocoon, we predict that collapsars are powerful multimessenger events.
more »
« less
- PAR ID:
- 10447760
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 951
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Evidence is mounting that recent multiwavelength detections of fast blue optical transients (FBOTs) in star-forming galaxies comprise a new class of transients, whose origin is yet to be understood. We show that hydrogen-rich collapsing stars that launch relativistic jets near the central engine can naturally explain the entire set of FBOT observables. The jet–star interaction forms a mildly relativistic shocked jet (inner cocoon) component, which powers cooling emission that dominates the high velocity optical signal during the first few weeks, with a typical energy of ∼1050–1051 erg. During this time, the cocoon radial energy distribution implies that the optical light curve exhibits a fast decay of $$L \,\, \buildrel\propto \over \sim \,\,t^{-2.4}$$. After a few weeks, when the velocity of the emitting shell is ∼0.01 c, the cocoon becomes transparent, and the cooling envelope governs the emission. The interaction between the cocoon and the dense circumstellar winds generates synchrotron self-absorbed emission in the radio bands, featuring a steady rise on a month time-scale. After a few months the relativistic outflow decelerates, enters the observer’s line of sight, and powers the peak of the radio light curve, which rapidly decays thereafter. The jet (and the inner cocoon) becomes optically thin to X-rays ∼day after the collapse, allowing X-ray photons to diffuse from the central engine that launched the jet to the observer. Cocoon cooling emission is expected at higher volumetric rates than gamma-ray bursts (GRBs) by a factor of a few, similar to FBOTs. We rule out uncollimated outflows, however, both GRB jets and failed collimated jets are compatible with all observables.more » « less
-
ABSTRACT Gamma-ray bursts (GRBs) are produced during the propagation of ultra-relativistic jets. It is challenging to study the jet close to the central source, due to the high opacity of the medium. In this paper, we present numerical simulations of relativistic jets propagating through a massive, stripped envelope star associated to long GRBs, breaking out of the star and accelerating into the circumstellar medium. We compute the gravitational wave (GW) signal resulting from the propagation of the jet through the star and the circumstellar medium. We show that key parameters of the jet propagation can be directly determined by the GW signal. The signal presents a first peak corresponding to the jet duration and a second peak which corresponds to the break-out time for an observer located close to the jet axis (which in turn depends on the stellar size), or to much larger times (corresponding to the end of the acceleration phase) for off-axis observers. We also show that the slope of the GW signal before and around the first peak tracks the jet luminosity history and the structure of the progenitor star. The amplitude of the GW signal is h+D ∼ hundreds to several thousands cm. Although this signal, for extragalactic sources, is outside the range of detectability of current GW detectors, it can be detected by future instruments as BBO, DECIGO, and ALIA. Our results illustrate that future detections of GW associated to GRB jets may represent a revolution in our understanding of this phenomenon.more » « less
-
Abstract Superluminous supernovae (SLSNe) radiate ≳10–100 times more energy than ordinary stellar explosions, implicating a novel power source behind these enigmatic events. One frequently discussed source, particularly for hydrogen-poor (Type I) SLSNe, is a central engine such as a millisecond magnetar or accreting black hole. Both black hole and magnetar engines are expected to channel a fraction of their luminosity into a collimated relativistic jet. Using 3D relativistic hydrodynamical simulations, we explore the interaction of a relativistic jet, endowed with a luminosityLj≈ 1045.5erg s−1and durationteng≈ 10 days compatible with those needed to power SLSNe, launched into the envelope of the exploding star. The jet successfully breaks through the expanding ejecta, and its shocked cocoon powers ultraviolet/optical emission lasting several days after the explosion and reaching a peak luminosity ≳1044erg s−1, corresponding to a sizable fraction ofLj. This high radiative efficiency is the result of the modest adiabatic losses the cocoon experiences owing to the low optical depths of the enlarged ejecta at these late times, e.g., compared to the more compact stars in gamma-ray bursts. The luminosity and temperature of the cocoon emission match those of the “bumps” in SLSN light curves observed weeks prior to the optical maximum in many SLSNe. Confirmation of jet breakout signatures by future observations (e.g., days-long to weeks-long internal X-ray emission from the jet for on-axis observers, spectroscopy confirming large photosphere velocitiesv/c≳ 0.1, or detection of a radio afterglow) would offer strong evidence for central engines powering SLSNe.more » « less
-
Abstract We investigate prospects for the detection of high-energy neutrinos produced in the prolonged jets of short gamma-ray bursts (sGRBs). The X-ray light curves of sGRBs show extended emission components lasting for 100–1000 s, which are considered to be produced by prolonged engine activity. Jets produced by such activity should interact with photons in the cocoon formed by the propagation of the jet inside the ejecta of neutron star mergers. We calculate neutrino emission from jets produced by prolonged engine activity, taking account of the interaction between photons provided from the cocoon and cosmic rays accelerated in the jets. We find that IceCube-Gen2, a future neutrino telescope, with second-generation gravitational-wave detectors will probably be able to observe neutrino signals associated with gravitational waves with around 10 years of operation, regardless of the assumed value of the Lorentz factor of the jets. Neutrino observations may enable us to constrain the dissipation region of the jets. We apply this model to GRB 211211A, a peculiar long GRB whose origin may be a binary neutron star merger. Our model predicts that IceCube is unlikely to detect any associated neutrinos, but a few similar events will be able to put a meaningful constraint on the physical quantities of the prolonged engine activities.more » « less
An official website of the United States government

