skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topologies of $$^{76}$$Ge double-beta decay events and calibration procedure biases
Abstract The analysis of the time profile of electrical signals produced by energy depositions in germanium detectors allows discrimination of events with different topologies. This is especially relevant for experiments searching for the neutrinoless double beta decay of $$^{76}$$ 76 Ge to distinguish the sought-after signal from other background sources. The standard calibration procedures used to tune the selection criteria for double-beta decay events use a $$^{228}$$ 228 Th source, because it provides samples of signal-like events. These samples exhibit energy spatial distributions with subtle different topologies compared to neutrinoless double-beta decay events. In this work, we will characterize these topological differences and, with the support of a $$^{56}$$ 56 Co source, evaluate biases and precision of calibration techniques which use such event samples. Our results will be particularly relevant for future experiments in which a solid estimation of the efficiency is required.  more » « less
Award ID(s):
1812374
PAR ID:
10447806
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The European Physical Journal C
Volume:
83
Issue:
3
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract TheMajorana Demonstratorwas a search for neutrinoless double-beta decay (0νββ) in the76Ge isotope. It was staged at the 4850-foot level of the Sanford Underground Research Facility (SURF) in Lead, SD. The experiment consisted of 58 germanium detectors housed in a low background shield and was calibrated once per week by deploying a228Th line source for 1 to 2 hours. The energy scale calibration determination for the detector array was automated using custom analysis tools. We describe the offline procedure for calibration of theDemonstratorgermanium detectors, including the simultaneous fitting of multiple spectral peaks, estimation of energy scale uncertainties, and the automation of the calibration procedure. 
    more » « less
  2. The SuperNEMO experiment will search for neutrinoless double-beta decay (0νββ), and study the Standard-Model double-beta decay process (2νββ). The SuperNEMO technology can measure the energy of each of the electrons produced in a double-beta (ββ) decay, and can reconstruct the topology of their individual tracks. The study of the double-beta decay spectrum requires very accurate energy calibration to be carried out periodically. The SuperNEMO Demonstrator Module will be calibrated using 42 calibration sources, each consisting of a droplet of 207Bi within a frame assembly. The quality of these sources, which depends upon the entire ^207Bi droplet being contained within the frame, is key for correctly calibrating SuperNEMO's energy response. In this paper, we present a novel method for precisely measuring the exact geometry of the deposition of 207Bi droplets within the frames, using Timepix pixel detectors. We studied 49 different sources and selected 42 high-quality sources with the most central source positioning. 
    more » « less
  3. Abstract The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $$^{136}$$ 136 Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of $$^{136}$$ 136 Xe. Here, we show that its projected half-life sensitivity is $$2.4\times {10}^{27}\,{\hbox {year}}$$ 2.4 × 10 27 year , using a fiducial volume of 5 t of natural xenon and 10 year of operation with a background rate of less than 0.2 events/(t  $$\cdot $$ ·  year) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $$^{136}$$ 136 Xe. 
    more » « less
  4. Abstract P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector’s response to $$\alpha $$ α particles incident on the sensitive passivated and p $$^+$$ + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in $$^{76}$$ 76 Ge. $$\alpha $$ α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of $$\alpha $$ α identification, reliably identifying $$\alpha $$ α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface $$\alpha $$ α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the $$0\nu \beta \beta $$ 0 ν β β region of interest window by an order of magnitude in the Majorana Demonstrator   and will be used in the upcoming LEGEND-200 experiment. 
    more » « less
  5. Abstract In the search for a monochromatic peak as the signature of neutrinoless double beta decay an excellent energy resolution and an ultra-low background around the Q -value of the decay are essential. The LEGEND-200 experiment performs such a search with high-purity germanium detectors enriched in 76 Ge immersed in liquid argon. To determine and monitor the stability of the energy scale and resolution of the germanium diodes, custom-made, low-neutron emission 228 Th sources are regularly deployed in the vicinity of the crystals. Here we describe the production process of the 17 sources available for installation in the experiment, the measurements of their alpha- and gamma- activities, as well as the determination of the neutron emission rates with a low-background LiI(Eu) detector operated deep underground. With a flux of ( 4.27 ± 0.60 stat ± 0.92 syst ) × 10 -4  n / (kBq·s), approximately one order of magnitude below that of commercial sources, the neutron-induced background rate, mainly from the activation of 76 Ge, is negligible compared to other background sources in LEGEND-200. 
    more » « less