Due to challenges around low-quality comments and misinformation, many news outlets have opted to turn off commenting features on their websites. The New York Times (NYT), on the other hand, has continued to scale up its online discussion resources to reach large audiences. Through interviews with the NYT moderation team, we present examples of how moderators manage the first ~24 hours of online discussion after a story breaks, while balancing concerns about journalistic credibility. We discuss how managing comments at the NYT is not merely a matter of content regulation, but can involve reporting from the "community beat" to recognize emerging topics and synthesize the multiple perspectives in a discussion to promote community. We discuss how other news organizations---including those lacking moderation resources---might appropriate the strategies and decisions offered by the NYT. Future research should investigate strategies to share and update the information generated about topics in the news through the course of content moderation.
more »
« less
Engagement or Knowledge Retention: Exploring Trade-offs in Promoting Discussion at News Websites
How does presenting comments in a news article affect the ways that readers engage with and retain information about news? This paper presents results from a controlled experiment investigating effects related to different strategies for promoting discussion at news websites (N=336 participants). The strategies include highlighting specific comments about a data visualization, providing prompts with the comments, and annotating prompts on the visualization. By comparison to a simple list of comments (baseline), our analysis found that annotations contributed to higher levels of participant engagement in the discussion, yet lower levels of knowledge retention related to the article. These findings raise new considerations about whether and how to integrate discussion content into news and points toward future content moderation systems that assist in representing and eliciting discussion at news websites.
more »
« less
- Award ID(s):
- 2009003
- PAR ID:
- 10447813
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 6
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 38
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Many news outlets allow users to contribute comments on topics about daily world events. News articles are the seeds that spring users' interest to contribute content, i.e., comments. An article may attract an apathetic user engagement (several tens of comments) or a spontaneous fervent user engagement (thousands of comments). In this paper, we study the problem of predicting the total number of user comments a news article will receive. Our main insight is that the early dynamics of user comments contribute the most to an accurate prediction, while news article specific factors have surprisingly little influence. This appears to be an interesting and understudied phenomenon: collective social behavior at a news outlet shapes user response and may even downplay the content of an article. We compile and analyze a large number of features, both old and novel from literature. The features span a broad spectrum of facets including news article and comment contents, temporal dynamics, sentiment/linguistic features, and user behaviors. We show that the early arrival rate of comments is the best indicator of the eventual number of comments. We conduct an in-depth analysis of this feature across several dimensions, such as news outlets and news article categories. We show that the relationship between the early rate and the final number of comments as well as the prediction accuracy vary considerably across news outlets and news article categories (e.g., politics, sports, or health).more » « less
-
Many news outlets allow users to contribute comments on topics about daily world events. News articles are the seeds that spring users' interest to contribute content, that is, comments. A news outlet may allow users to contribute comments on all their articles or a selected number of them. The topic of an article may lead to an apathetic user commenting activity (several tens of comments) or to a spontaneous fervent one (several thousands of comments). This environment creates a social dynamic that is little studied. The social dynamics around articles have the potential to reveal interesting facets of the user population at a news outlet. In this paper, we report the salient findings about these social media from 15 months worth of data collected from 17 news outlets comprising of over 38,000 news articles and about 21 million user comments. Analysis of the data reveals interesting insights such as there is an uneven relationship between news outlets and their user populations across outlets. Such observations and others have not been revealed, to our knowledge. We believe our analysis in this paper can contribute to news predictive analytics (e.g., user reaction to a news article or predicting the volume of comments posted to an article).more » « less
-
Abstract Many news outlets allow users to contribute comments on topics about daily world events. News articles are the seeds that spring users' interest to contribute content, that is, comments. A news outlet may allow users to contribute comments on all their articles or a selected number of them. The topic of an article may lead to an apathetic user commenting activity (several tens of comments) or to a spontaneous fervent one (several thousands of comments). This environment creates a social dynamic that is little studied. The social dynamics around articles have the potential to reveal interesting facets of the user population at a news outlet. In this paper, we report the salient findings about these social media from 15 months worth of data collected from 17 news outlets comprising of over 38,000 news articles and about 21 million user comments. Analysis of the data reveals interesting insights such as there is an uneven relationship between news outlets and their user populations across outlets. Such observations and others have not been revealed, to our knowledge. We believe our analysis in this paper can contribute to news predictive analytics (e.g., user reaction to a news article or predicting the volume of comments posted to an article). This article is categorized under:Internet > Society and CultureEnsemble Methods > Web MiningFundamental Concepts of Data and Knowledge > Human Centricity and User Interactionmore » « less
-
null (Ed.)The Web has become the main source for news acquisition. At the same time, news discussion has become more social: users can post comments on news articles or discuss news articles on other platforms like Reddit. These features empower and enable discussions among the users; however, they also act as the medium for the dissemination of toxic discourse and hate speech. The research community lacks a general understanding on what type of content attracts hateful discourse and the possible effects of social networks on the commenting activity on news articles. In this work, we perform a large-scale quantitative analysis of 125M comments posted on 412K news articles over the course of 19 months. We analyze the content of the collected articles and their comments using temporal analysis, user-based analysis, and linguistic analysis, to shed light on what elements attract hateful comments on news articles. We also investigate commenting activity when an article is posted on either 4chan’s Politically Incorrect board (/pol/) or six selected subreddits. We find statistically significant increases in hateful commenting activity around real-world divisive events like the “Unite the Right” rally in Charlottesville and political events like the second and third 2016 US presidential debates. Also, we find that articles that attract a substantial number of hateful comments have different linguistic characteristics when compared to articles that do not attract hateful comments. Furthermore, we observe that the post of a news articles on either /pol/ or the six subreddits is correlated with an increase of (hateful) commenting activity on the news articles.more » « less
An official website of the United States government

