skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of Human Reaching Pose Sequences In Human-Robot Collaboration
In Human-Robot Collaboration (HRC), robots and humans must work together in shared, overlapping, workspaces to accomplish tasks. If human and robot motion can be coordinated, then collisions between robot and human can seamlessly be avoided without requiring either of them to stop work. A key part of this coordination is anticipating humans’ future motion so robot motion can be adapted proactively. In this work, a generative neural network predicts a multi-step sequence of human poses for tabletop reaching motions. The multi-step sequence is mapped to a time-series based on a human speed versus motion distance model. The input to the network is the human’s reaching target relative to current pelvis location combined with current human pose. A dataset was generated of human motions to reach various positions on or above the table in front of the human starting from a wide variety of initial human poses. After training the network, experiments showed that the predicted sequences generated by this method matched the actual recordings of human motion within an L2 joint error of 7.6 cm and L2 link roll-pitch-yaw error of 0.301 radians on average. This method predicts motion for an entire reach motion without suffering from the exponential propagation of prediction error that limits the horizon of prior works.  more » « less
Award ID(s):
1830383
PAR ID:
10447824
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2023 International Design Engineering Technical Conferences and Computers Information in Engineering Conference (IDETC-CIE2023)
Volume:
7
Page Range / eLocation ID:
10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pai Zheng (Ed.)
    Abstract A significant challenge in human–robot collaboration (HRC) is coordinating robot and human motions. Discoordination can lead to production delays and human discomfort. Prior works seek coordination by planning robot paths that consider humans or their anticipated occupancy as static obstacles, making them nearsighted and prone to entrapment by human motion. This work presents the spatio-temporal avoidance of predictions-prediction and planning framework (STAP-PPF) to improve robot–human coordination in HRC. STAP-PPF predicts multi-step human motion sequences based on the locations of objects the human manipulates. STAP-PPF then proactively determines time-optimal robot paths considering predicted human motion and robot speed restrictions anticipated according to the ISO15066 speed and separation monitoring (SSM) mode. When executing robot paths, STAP-PPF continuously updates human motion predictions. In real-time, STAP-PPF warps the robot’s path to account for continuously updated human motion predictions and updated SSM effects to mitigate delays and human discomfort. Results show the STAP-PPF generates robot trajectories of shorter duration. STAP-PPF robot trajectories also adapted better to real-time human motion deviation. STAP-PPF robot trajectories also maintain greater robot/human separation throughout tasks requiring close human–robot interaction. Tests with an assembly sequence demonstrate STAP-PPF’s ability to predict multi-step human tasks and plan robot motions for the sequence. STAP-PPF also most accurately estimates robot trajectory durations, within 30% of actual, which can be used to adapt the robot sequencing to minimize disruption. 
    more » « less
  2. This work aims to generate natural and diverse group motions of multiple humans from textual descriptions. While singleperson text-to-motion generation is extensively studied, it remains challenging to synthesize motions for more than one or two subjects from in-the-wild prompts, mainly due to the lack of available datasets. In this work, we curate human pose and motion datasets by estimating pose information from large-scale image and video datasets. Our models use a transformer-based diffusion framework that accommodates multiple datasets with any number of subjects or frames. Experiments explore both generation of multi-person static poses and generation of multiperson motion sequences. To our knowledge, our method is the first to generate multi-subject motion sequences with high diversity and fidelity from a large variety of textual prompts. 
    more » « less
  3. This paper addresses human-robot collaboration (HRC) challenges of integrating predictions of human activity to provide a proactive-n-reactive response capability for the robot. Prior works that consider current or predicted human poses as static obstacles are too nearsighted or too conservative in planning, potentially causing delayed robot paths. Alternatively, time-varying prediction of human poses would enable robot paths that avoid anticipated human poses, synchronized dynamically in time and space. Herein, a proactive path planning method, denoted STAP, is presented that uses spatiotemporal human occupancy maps to find robot trajectories that anticipate human movements, allowing robot passage without stopping. In addition, STAP anticipates delays from robot speed restrictions required by ISO/TS 15066 speed and separation monitoring (SSM). STAP also proposes a sampling-based planning algorithm based on RRT* to solve the spatio-temporal motion planning problem and find paths of minimum expected duration. Experimental results show STAP generates paths of shorter duration and greater average robot-human separation distance throughout tasks. Additionally, STAP more accurately estimates robot trajectory durations in HRC, which are useful in arriving at proactive-n-reactive robot sequencing. 
    more » « less
  4. Abstract Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system’s capability to accurately predict both human intentions and trajectories. 
    more » « less
  5. Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system's capability to accurately predict both human intentions and trajectories. 
    more » « less