skip to main content

Title: Stationary Waves Weaken and Delay the Near-Surface Response to Stratospheric Ozone Depletion
Abstract An intermediate-complexity moist general circulation model is used to investigate the factors controlling the magnitude of the surface impact from Southern Hemisphere springtime ozone depletion. In contrast to previous idealized studies, a model with full radiation is used; furthermore, the model can be run with a varied representation of the surface, from a zonally uniform aquaplanet to a configuration with realistic stationary waves. The model captures the observed summertime positive Southern Annular Mode response to stratospheric ozone depletion. While synoptic waves dominate the long-term poleward jet shift, the initial response includes changes in planetary waves that simultaneously moderate the polar cap cooling (i.e., a negative feedback) and also constitute nearly one-half of the initial momentum flux response that shifts the jet poleward. The net effect is that stationary waves weaken the circulation response to ozone depletion in both the stratosphere and troposphere and also delay the response until summer rather than spring when ozone depletion peaks. It is also found that Antarctic surface cooling in response to ozone depletion helps to strengthen the poleward shift; however, shortwave surface effects of ozone are not critical. These surface temperature and stationary wave feedbacks are strong enough to overwhelm the previously recognized jet latitude/persistence feedback, potentially explaining why some recent comprehensive models do not exhibit a clear relationship between jet latitude/persistence and the magnitude of the response to ozone. The jet response is shown to be linear with respect to the magnitude of the imposed stratospheric perturbation, demonstrating the usefulness of interannual variability in ozone depletion for subseasonal forecasting.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
565 to 583
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ~2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ~3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentially plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index. 
    more » « less
  2. One of the greatest uncertainties when it comes to future projections of regional climate is how the large-scale atmospheric circulation will change (Shepherd 2014). While there is a general consensus among models on a zonal mean poleward shifting of the mid-latitude westerlies and associated storm tracks (Yin 2005; Kidston and Gerber 2010; Chang et al. 2012; Swart and Fyfe 2012; Wilcox et al. 2012; Barnes and Polvani 2013), there is a large spread in the magnitude of this response. In addition to this zonal mean, poleward shifting view, there are more localized changes in the circulation associated with altered stationary wave patterns (Stephenson and Held 1993; Joseph et al. 2004; Simpson et al. 2014). For many of these predicted changes, we do not have a good physical understanding of the mechanisms that produce them, or the factors that govern their uncertainty. The stratosphere and how it is expected to change in the future is one source of uncertainty, among many, in future tropospheric mid-latitude circulation change. There are a variety of ways in which the stratosphere’s mean state, variability and composition may impact on tropospheric climate change. Instead of providing an exhaustive review of this topic, we focus on the role of changes in the extra-tropical mean state of the stratosphere in future projections of tropospheric mid-latitude climate by considering two particular aspects. For the Northern Hemisphere we discuss the impact of uncertainty in future changes in the stratospheric polar vortex on tropospheric climate change. For the Southern Hemisphere we discuss the relative roles of stratospheric ozone depletion and changing greenhouse gas concentrations on the future evolution of the Southern Hemisphere mid-latitude jet stream. 
    more » « less
  3. Proxy data and observations suggest that large tropical volcanic eruptions induce a poleward shift of the North Atlantic jet stream in boreal winter. However, there is far from universal agreement in models on this effect and its mechanism, and the possibilities of a corresponding jet shift in the Southern Hemisphere or the summer season have received little attention. Using a hierarchy of simplified atmospheric models, this study examines the impact of stratospheric aerosol on the extratropical circulation over the annual cycle. In particular, the models allow the separation of the dominant shortwave (surface cooling) and longwave (stratospheric warming) impacts of volcanic aerosol. It is found that stratospheric warming shifts the jet poleward in both the summer and winter hemispheres. The experiments cannot definitively rule out the role of surface cooling, but they provide no evidence that it shifts the jet poleward. Further study with simplified models demonstrates that the response to stratospheric warming is remarkably generic and does not depend critically on the boundary conditions (e.g., the planetary wave forcing) or the atmospheric physics (e.g., the treatment of radiative transfer and moist processes). It does, however, fundamentally involve both zonal-mean and eddy circulation feedbacks. The time scales, seasonality, and structure of the response provide further insight into the mechanism, as well as its connection to modes of intrinsic natural variability. These findings have implications for the interpretation of comprehensive model studies and for postvolcanic prediction.

    more » « less
  4. Abstract

    As the leading mode of Pacific variability, El Niño–Southern Oscillation (ENSO) causes vast and widespread climatic impacts, including in the stratosphere. Following discovery of a stratospheric pathway of ENSO to the Northern Hemisphere surface, here we aim to investigate if there is a substantial Southern Hemisphere (SH) stratospheric pathway in relation to austral winter ENSO events. Large stratospheric anomalies connected to ENSO occur on average at high SH latitudes as early as August, peaking at around 10 hPa. An overall colder austral spring Antarctic stratosphere is generally associated with the warm phase of the ENSO cycle, and vice versa. This behavior is robust among reanalysis and six separate model ensembles encompassing two different model frameworks. A stratospheric pathway is identified by separating ENSO events that exhibit a stratospheric anomaly from those that do not and comparing to stratospheric extremes that occur during neutral ENSO years. The tropospheric eddy-driven jet response to the stratospheric ENSO pathway is the most robust in the spring following a La Niña, but extends into summer, and is more zonally symmetric compared to the tropospheric ENSO teleconnection. The magnitude of the stratospheric pathway is weaker compared to the tropospheric pathway and therefore, when it is present, has a secondary role. For context, the magnitude is approximately half that of the eddy-driven jet modulation due to austral spring ozone depletion in the model simulations. This work establishes that the stratospheric circulation acts as an intermediary in coupling ENSO variability to variations in the austral spring and summer tropospheric circulation.

    more » « less
  5. Abstract. Stratosphere-to-troposphere transport (STT) is an important sourceof ozone for the troposphere, particularly over western North America. STTin this region is predominantly controlled by a combination of thevariability and location of the Pacific jet stream and the amount of ozonein the lower stratosphere, two factors which are likely to change ifgreenhouse gas concentrations continue to increase. Here we use WholeAtmosphere Community Climate Model experiments with a tracer ofstratospheric ozone (O3S) to study how end-of-the-century RepresentativeConcentration Pathway (RCP) 8.5 sea surface temperatures (SSTs) andgreenhouse gases (GHGs), in isolation and in combination, influence STT ofozone over western North America relative to a preindustrial controlbackground state. We find that O3S increases by up to 37 % during late winter at 700 hPaover western North America in response to RCP8.5 forcing, with the increasestapering off somewhat during spring and summer. When this response to RCP8.5greenhouse gas forcing is decomposed into the contributions made by futureSSTs alone versus future GHGs alone, the latter are found to be primarilyresponsible for these O3S changes. Both the future SSTs alone and the futureGHGs alone accelerate the Brewer–Dobson circulation, which modifiesextratropical lower-stratospheric ozone mixing ratios. While the future GHGsalone promote a more zonally symmetric lower-stratospheric ozone change dueto enhanced ozone production and some transport, the future SSTs aloneincrease lower-stratospheric ozone predominantly over the North Pacific viatransport associated with a stationary planetary-scale wave. Ozoneaccumulates in the trough of this anomalous wave and is reduced over thewave's ridges, illustrating that the composition of the lower-stratosphericozone reservoir in the future is dependent on the phase and position of thestationary planetary-scale wave response to future SSTs alone, in additionto the poleward mass transport provided by the accelerated Brewer–Dobsoncirculation. Further, the future SSTs alone account for most changes to thelarge-scale circulation in the troposphere and stratosphere compared to theeffect of future GHGs alone. These changes include modifying the positionand speed of the future North Pacific jet, lifting the tropopause,accelerating both the Brewer–Dobson circulation's shallow and deep branches,and enhancing two-way isentropic mixing in the stratosphere. 
    more » « less