skip to main content


Title: WaxPSM: A Forward Model of Leaf Wax Hydrogen Isotope Ratios to Bridge Proxy and Model Estimates of Past Climate
Abstract

The D/H ratio of epicuticular plant waxes (δDwax) preserved in sedimentary archives is a powerful tool for paleoclimate reconstruction, but comparisons to other proxy records or to climate model simulations requires a proxy system model (PSM) that accounts for transformations betweenδDprecipandδDwax. Here we present a new, publicly available PSM for plant waxes, WaxPSM. WaxPSM predictsδDwaxfrom observational data or any isotope‐enabled modern, paleo, or future climate model experiment.δDvalues of theC29 n‐alkane are calculated based on precipitation or soil waterδDand observed apparent fractionation values, adjusted for plant‐type differences. Using WaxPSM, we assess three key uncertainties inδDwaxrecords: the degree to which variations inδD may reflect changes in vegetation rather than climate, structural uncertainties that arise from limited water isotopic observations, and the impacts of land cover change on climate reconstructions during the Last Glacial Maximum and the Preindustrial period. Parametric and structural uncertainties can causeδDwaxvariations up to 50‰, but in most cases, the differences are ∼10–30‰. The drier subtropics are additionally impacted by the incorrect structural assumption that plants' source water,δDsoil, is isotopically similar to the climate variable of interest,δDprecip. We recommend a coordinated, systematic effort to elevate observational constraints onδDprecip,δDsoil, and theδDof multiple compound classes, which would dramatically reduce parametric and structural uncertainties and allow further complexity to be built into the model.

 
more » « less
NSF-PAR ID:
10447898
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
124
Issue:
7
ISSN:
2169-8953
Page Range / eLocation ID:
p. 2107-2125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Indian Ocean sea surface temperatures impact precipitation across the basin through coupled ocean‐atmosphere responses to changes in climate. To understand the hydroclimate response over the western Indian Ocean and equatorial east Africa to different forcing mechanisms, we present four new proxy reconstructions from core VM19‐193 (2.98°N, 51.47°E) that span the last 250 ky. Sub‐surface water temperatures (Sub‐T; TEX86) show strong precessional (23 ky) variability that is primarily influenced by maximum incoming solar radiation (insolation) during the Northern Hemisphere spring season, likely indicating that local insolation dominates the upper water column at this tropical location over time. Leaf waxes, on the other hand, reflect two different precipitation signals:δ13Cwax(in phase with boreal fall insolation) is likely reflecting vegetation changes in response to local rainfall over east Africa, whereasδDprecip(primarily driven by boreal summer insolation) represents changes in regional circulation associated with the summer monsoon. Glacial‐interglacial changes in ocean temperatures support glacial shelf exposure over the Maritime Continent in the eastern Indian Ocean and the subsequent weakening of the Indian Walker Circulation as a mechanism driving 100 ky climate variability across the tropical Indo‐Pacific. Additionally, the 100 ky spectral power inδDprecipsupports a basin‐wide weakening of summer monsoon circulation in response to glacial climates. Overall, the proxy records from VM19‐193 indicate that both precession and glacial‐interglacial cycles exert control over hydroclimate at this tropical location.

     
    more » « less
  2. Abstract

    We evaluate the efficacy of the stable isotope composition of precipitation and plant waxes as proxies for paleoaltimetry and paleohydrology in the northern tropical Andes. We report monthly hydrogen (δ2Hp) and oxygen (δ18Op) isotope values of precipitation for an annual cycle, and hydrogen isotope values of plant waxes (δ2Hwax) obtained from modern soils along the eastern and western flanks of the Eastern Cordillera of Colombia. δ2Hp, δ18Op, as well as the unweighted mean δ2Hwaxvalues ofn‐C29,n‐C31, andn‐C33n‐alkanes in the eastern flank show a dependence on elevation (R2 = 0.90, 0.82, and 0.65, respectively). In stark contrast, the stable isotope compositions of neither precipitation nor plant waxes from the western flank correlate with elevation (R2 < 0.23), on top of a negligible (p‐value >0.05) correlation between δ2Hwaxand δ2Hp. In general, δ2Hwaxvalues along the eastern flank of the Eastern Cordillera seem to follow the trend of a simple Rayleigh distillation process that is consistent with studies elsewhere on the eastern side of the Andes in South America. Neither δ2Hpnor δ18Op, and therefore δ2Hwax, offer reliable estimates of past elevations in the western flank, due perhaps to water vapor source mixing, evaporation overprint, contrasting plant communities, and/or differences in evapotranspiration. Thus, δ2Hwaxis only reliable for paleohydrology and paleoaltimetry reconstructions on the eastern flank of the Andes, whereas interpretations based on δ2Hpand/or δ18Opwest of the highest point of the Eastern Cordillera need to consider mixing of moisture sources in addition to precipitation amount.

     
    more » « less
  3. Abstract

    Sedimentary plant waxδ2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen‐alkanoic acid andn‐alkane chain‐length distributions andn‐alkanoic acidδ2H andδ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalixspp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐alkanoic acidδ2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalixspp. In contrast, sedimentary long‐chainn‐alkanoic acidδ2H values fall between those for submerged/floating aquatic plants andSalixspp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes.

     
    more » « less
  4. Abstract

    The Arctic hydrological cycle is predicted to intensify as the Arctic warms, due to increased poleward moisture transport during summer and increased evaporation from seas once ice‐covered during winter. Records of past Arctic precipitation seasonality are important because they provide a context for these ongoing changes. In some Arctic lakes, stable isotopes of oxygen and hydrogen (δ18O and δ2H, respectively) vary seasonally, due to seasonal changes in precipitation δ18O and δ2H. We reconstruct precipitation seasonality from Lake N3, a well‐dated lake sediment archive in Disko Bugt, western Greenland, by generating Holocene records of two proxies that are produced at different times of the year, and therefore record different lake water seasonal isotopic compositions. Aquatic plants synthesize waxes throughout the summer, and their δ2H reflects winter‐biased precipitation δ2H at Lake N3, whereas chironomids synthesize their head capsules between late summer and winter, and their δ18O reflects summer‐biased precipitation δ18O at Lake N3. During the middle Holocene at Lake N3, aquatic plant leaf wax was strongly2H‐depleted, while chironomid chitin was18O‐enriched. We guide interpretations of these records using sensitivity tests of a lake water and energy balance model, where we change precipitation amount and isotope seasonality inputs. The sensitivity tests suggest that the contrasting trends between proxies were likely caused by an increase in precipitation amount during all seasons and an increase in precipitation isotope seasonality, in addition to proxy‐specific mechanisms, highlighting the importance of understanding lake‐ and proxy‐specific systematics when interpreting records from sediment archives.

     
    more » « less
  5. Rationale

    Plant lipid biomarkers, such as plant waxes and terpenoids, and the stable isotopic composition of bulk leaves are widely used in both modern and paleoclimate studies for tracking vegetation and climate. However, the effects of different drying methods on the preservation of plant lipid biomarkers and the stable isotopic compositions of leaves are less explored. Here, we investigated various drying methods for the measurement of plant lipid concentrations and bulk leaf isotopic compositions.

    Methods

    Leaves from four tree species (Acer rubrum,Pinus sylvestris,Platanus occidentalis, andTaxodium distichum) were collected and dried using air, an oven, a freeze‐dryer, and a microwave. We compared concentrations of leaf waxes and terpenoids and carbon (δ13C) and nitrogen (δ15N) isotopic compositions of leaves by different drying methods.

    Results

    The air, oven, freeze‐dryer, and microwave drying methods did not affect lipid concentrations significantly, and only a few homologues differed (38.1% or 41.8 μg/g on average) possibly due to biological variations or enhanced extraction efficiencies. The δ13C values were not affected by drying methods, whereas the δ15N values in oven‐dried leaves in some species were higher by 0.2–0.7‰ than those obtained by other methods. Though small, we attribute these patterns to loss of leaf compounds with lower isotope ratios during oven‐drying.

    Conclusions

    Based on our results, each drying technique yielded equivalent results for all plant wax and terpenoid concentrations and bulk leaf δ13C values; however, oven‐drying modified the δ15N values.

     
    more » « less