skip to main content


Title: A Massive Star Is Born: How Feedback from Stellar Winds, Radiation Pressure, and Collimated Outflows Limits Accretion onto Massive Stars
Abstract Massive protostars attain high luminosities as they are actively accreting and the radiation pressure exerted on the gas in the star’s atmosphere may launch isotropic high-velocity winds. These winds will collide with the surrounding gas producing shock-heated ( T ∼ 10 7 K) tenuous gas that adiabatically expands and pushes on the dense gas that may otherwise be accreted. We present a suite of 3D radiation-magnetohydrodynamic simulations of the collapse of massive prestellar cores and include radiative feedback from the stellar and dust-reprocessed radiation fields, collimated outflows, and, for the first time, isotropic stellar winds to model how these processes affect the formation of massive stars. We find that winds are initially launched when the massive protostar is still accreting and its wind properties evolve as the protostar contracts to the main sequence. Wind feedback drives asymmetric adiabatic wind bubbles that have a bipolar morphology because the dense circumstellar material pinches the expansion of the hot shock-heated gas. We term this the “wind tunnel effect.” If the core is magnetized, wind feedback is less efficient at driving adiabatic wind bubbles initially because magnetic tension delays their growth. We find that wind feedback eventually quenches accretion onto ∼30 M ⊙ protostars that form from the collapse of the isolated cores simulated here. Hence, our results suggest that ≳30 M ⊙ stars likely require larger-scale dynamical inflows from their host cloud to overcome wind feedback. Additionally, we discuss the implications of observing adiabatic wind bubbles with Chandra while the massive protostars are still highly embedded.  more » « less
Award ID(s):
2202249
NSF-PAR ID:
10447919
Author(s) / Creator(s):
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supermassive stars (SMSs) with masses of 𝑀∗ ≃ 104–105 M⊙ are invoked as possible seeds of high-redshift supermassive black holes, but it remains under debate whether their protostar indeed acquires sufficient mass via gas accretion overcoming radiative feedback. We investigate protostellar growth in dynamically heated atomic-cooling haloes (ACHs) found in recent cosmological simulations, performing three-dimensional radiation hydrodynamical (RHD) simulations that consider stellar evolution under variable mass accretion. We find that one of the ACHs feeds the central protostar at rates exceeding a critical value, above which the star evolves in a cool bloating phase and hardly produces ionizing photons. Consequently, the stellar mass reaches 𝑀∗ 􏰁 104 M⊙ unimpeded by radiative feedback. In the other ACH, where the mass supply rate is lower, the star spends most of its life as a hot main-sequence star, emitting intense ionizing radiation. Then, the stellar mass growth is terminated around 500 M⊙ by photoevaporation of the circumstellar disk. A series of our RHD simulations provide a formula of the final stellar mass determined either by stellar feedback or their lifetime as a function of the mass supply rate from the parent cloud in the absence of stellar radiation. Combining the results with the statistical properties of SMS-forming clouds in high-redshift quasar progenitor haloes, we construct a top-heavy mass distribution of primordial stars over 𝑀∗ ≃ 100–105 M⊙, approximately following a power-law spectrum of ∝ 𝑀−1.3 with a steeper decline at 𝑀 􏰁 2 × 104 M . Their massive BH remnants would be ∗∗⊙ further fed via the dense debris disk, powering “milli-quasars" with a bolometric luminosity of 𝐿bol 􏰁 1043 erg s−1. 
    more » « less
  2. ABSTRACT

    Supermassive stars with masses of M* ≃ 104–105 M⊙ are invoked as possible seeds of high-redshift supermassive black holes, but it remains under debate whether their protostar indeed acquires sufficient mass via gas accretion overcoming radiative feedback. We investigate protostellar growth in dynamically heated atomic cooling haloes (ACHs) found in recent cosmological simulations, performing three-dimensional radiation hydrodynamical simulations that consider stellar evolution under variable mass accretion. We find that one of the ACHs feeds the central protostar at rates exceeding a critical value, above which the star evolves in a cool bloating phase and hardly produces ionizing photons. Consequently, the stellar mass reaches M* ≳ 104 M⊙ unimpeded by radiative feedback. In the other ACH, where the mass supply rate is lower, the star evolves almost as a hot main-sequence star, emitting intense ionizing radiation. Then, the stellar mass growth is terminated around 500 M⊙ by photoevaporation of the circumstellar disc. Our simulations provide a formula of the final stellar mass determined either by stellar feedback or their lifetime as a function of the mass supply rate from the parent cloud. Combining the results with the statistical properties of star-forming clouds in high-redshift quasar progenitor haloes, we construct a top-heavy mass distribution of primordial stars over M* ≃ 100–105 M⊙, approximately following a power-law spectrum of ${\propto} M_\ast ^{-1.3}$. Their black hole remnants would be further fed via the dense debris disc, powering ‘milliquasars’ with a bolometric luminosity of Lbol ≳ 1043 erg s−1.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio, and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbours. In this case, stellar winds energy is added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than 105 yr. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main-sequence (PMS) low-mass stars through photoevaporation of their protostellar discs. Mass loading at a rate in excess of 8 × 10−9 M⊙ yr−1 per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star-forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few million of years when the PMS star protostellar discs vanish and mass loading ceases that allows a cluster to form a global wind. 
    more » « less
  4. Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low and moderate luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳ 20 − 30 Myr, the inner ∼1 − 10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor ∼2 − 3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker disks and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations. 
    more » « less
  5. ABSTRACT

    A core-collapse supernova is generated by the passage of a shock wave through the envelope of a massive star, where the shock wave is initially launched from the ‘bounce’ of the neutron star formed during the collapse of the stellar core. Instead of successfully exploding the star, however, numerical investigations of core-collapse supernovae find that this shock tends to ‘stall’ at small radii (≲10 neutron star radii), with stellar material accreting on to the central object through the standing shock. Here, we present time-steady, adiabatic solutions for the density, pressure, and velocity of the shocked fluid that accretes on to the compact object through the stalled shock, and we include the effects of general relativity in the Schwarzschild metric. Similar to previous works that were carried out in the Newtonian limit, we find that the gas ‘settles’ interior to the stalled shock; in the relativistic regime analysed here, the velocity asymptotically approaches zero near the Schwarzschild radius. These solutions can represent accretion on to a material surface if the radius of the compact object is outside of its event horizon, such as a neutron star; we also discuss the possibility that these solutions can approximately represent the accretion of gas on to a newly formed black hole following a core-collapse event. Our findings and solutions are particularly relevant in weak and failed supernovae, where the shock is pushed to small radii and relativistic effects are large.

     
    more » « less