skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Activity density at a continental scale: What drives invertebrate biomass moving across the soil surface?
Abstract Activity density (AD), the rate that an individual taxon or its biomass moves through the environment, is used both to monitor communities and quantify the potential for ecosystem work. The Abundance Velocity Hypothesis posited that AD increases with aboveground net primary productivity (ANPP) and is a unimodal function of temperature. Here we show that, at continental extents, increasing ANPP may have nonlinear effects on AD: increasing abundance, but decreasing velocity as accumulating vegetation interferes with movement. We use 5 yr of data from the NEON invertebrate pitfall trap arrays including 43 locations and four habitat types for a total of 77 habitat–site combinations to evaluate continental drivers of invertebrate AD. ANPP and temperature accounted for one‐third to 92% of variation in AD. As predicted, AD was a unimodal function of temperature in forests and grasslands but increased linearly in open scrublands. ANPP yielded further nonlinear effects, generating unimodal AD curves in wetlands, and bimodal curves in forests. While all four habitats showed no AD trends over 5 yr of sampling, these nonlinearities suggest that trends in AD, often used to infer changes in insect abundance, will vary qualitatively across ecoregions.  more » « less
Award ID(s):
1702426
PAR ID:
10448009
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
1
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Activity density (AD), the rate at which animals collectively move through their environment, emerges as the product of a taxon's local abundance and its velocity. We analyze drivers of seasonal AD using 47 localities from the National Ecological Observatory Network (NEON) both to better understand variation in ecosystem rates like pollination and seed dispersal as well as the constraints of using AD to monitor invertebrate populations. AD was measured as volume from biweekly pitfall trap arrays (ml trap−114 days−1). Pooled samples from 2017 to 2018 revealed AD extrema at most temperatures but with a strongly positive overall slope. However, habitat types varied widely in AD's seasonal temperature sensitivity, from negative in wetlands to positive in mixed forest, grassland, and shrub habitats. The temperature of maximum AD varied threefold across the 47 localities; it tracked the threefold geographic variation in maximum growing season temperature with a consistent gap ofca. 3°C across habitats, a novel macroecological result. AD holds potential as an effective proxy for investigating ecosystem rates driven by activity. However, our results suggest that its use for monitoring insect abundance is complicated by the many ways that both abundance and velocity are constrained by a locality's temperature and plant physiognomy. 
    more » « less
  2. Abstract A widely examined predictive model of invertebrate community dynamics in glacial‐melt streams describes longitudinal changes in community structure with changing water temperature and channel stability with increasing distance from glaciers. Previous studies conducted in Europe, Greenland, New Zealand, and South America have supported the predictions of the invertebrate model and contributed to its refinement. However, none has evaluated if the model fits invertebrate community dynamics over a full range of distances from the glacier and water temperature conditions within glacial‐melt streams in southeast Tibet.We sampled invertebrates and measured water temperature, specific conductivity, turbidity, and associated glacier‐related variables within 14 sites in three subalpine glacial‐melt catchments in southeastern Tibet's Three Parallel Rivers region during 2010, 2011, 2013, and 2015. Our sites encompassed a temperature gradient from the upstream metakryal sites (maximum summer water temperature <2°C) to the furthest downstream site (maximum summer temperature >10°C) near the Mekong River.We evaluated the relationships of invertebrate community structure with in situ water temperature and channel stability which are the focal habitat variables in the invertebrate model. The additional habitat variables of distance from the glacier, glacier size, conductivity, and turbidity were evaluated to see if these were more important determinants of community structure than in situ water temperature and channel stability.Minimum and in situ water temperatures were positively correlated with distance from the glacier but Pfankuch Channel Stability Index bottom scores were not. Thus, the physical template within our study area differed from the expected template of the invertebrate model.Similar to the invertebrate model, in situ water temperature by itself or combined with Pfankuch index best explained five invertebrate response variables. In contrast with the invertebrate model, conductivity and turbidity best explained invertebrate taxa richness, density, and the site scores of the first and second detrended correspondence analysis axes of relative abundance.The invertebrate model predicts that only Diamesinae will occur in metakryal sites. However, in our metakryal sites we frequently captured 13 taxa (two Nemouridae morphotypes, Diamesinae, Orthocladiinae,Rhyacophila,Epeorus, Taeniopterygidae,Baetis,Capnia, Simuliidae, Limnephilidae,Himalopsyche, and Collembola).Invertebrate‐habitat relationships and taxa occurrence trends in glacial‐melt catchments in southeast Tibet differed from the invertebrate model predictions. Our findings highlight the need to develop a regional version of the invertebrate model applicable to Asian glacial‐melt streams with unstable stream channels throughout their catchments and that do not freeze in the winter. 
    more » « less
  3. Abstract Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground. 
    more » « less
  4. ABSTRACT Human‐driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem‐level processes. Here, we present a meta‐analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human‐driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years. 
    more » « less
  5. Disturbances are drivers of ecosystem function and play important roles in shaping ecological communities. Pre- scribed fire and grazing disturbances are common management tools in restored and remnant grasslands. The effects of these management actions on plant communities and on vegetation-dwelling invertebrates are generally well studied. However, less is known about their effects on ground-dwelling invertebrates, which can contribute to important ecosystem processes like herbivory, predation, and decomposition. We examined bison grazing and prescribed fire effects on abundance, diversity, and community composition of ground-dwelling invertebrate groups in restored tallgrass prairies using pitfall trap samples. Surprisingly, invertebrate Shannon diversity decreased when bison were present and was unaffected by fire or the fire–bison interaction. Bison, and to a lesser extent fire, also shifted community composition, increasing abundance of ground, rove, and dung beetles, as well as orthopterans and spiders. Prescribed fire generally increased beetles but caused declines in sev- eral ecologically diverse invertebrate groups, including harvestmen and true bugs, although these reduced abundances did not lead to differences in overall diversity. Bison presence may amplify the abundances of dominant groups, such as ground and dung beetles and orthopterans, that outcompete other invertebrates and reduce diversity. Implications for insect conservation Prescribed fire and grazing by bison change ground-dwelling invertebrate community composition, but bison presence did not reduce the abundance of most taxonomic groups. Fire may have short-term negative impacts on some invertebrate groups that promote desirable invertebrate-driven ecosystem processes, but these effects are likely short-lived, and the resulting environmental mosaic under bison and fire management could support biodiversity over the long-term. 
    more » « less