While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.
Anthropogenic aerosols are hazardous to human health but have helped offset warming from greenhouse gases (GHGs), creating a potential regulatory tradeoff. As countries implement their GHG reduction targets under the Paris climate agreement, the co‐emissions of aerosols and their precursors will also change. Since these co‐emissions vary by country and by economic sector, each country will face different tradeoffs between aerosol‐driven health or temperature co‐benefits. We combine simple parameterizations of physical processes and health outcomes to examine three idealized climate policy approaches that are consistent with the Paris Agreement targets, which (i) optimize for local air quality, (ii) reduce global temperature change, or (iii) reduce emissions equally from all domestic economic sectors. We evaluate aerosol impacts on premature mortality and global mean temperature change under these three policy approaches and find that by 2030 the three policies yield differences of over 1 million annual premature deaths and global temperature differences of the same magnitude as those from GHG reductions. We also show that implementing equal reductions between all economic sectors can actually result in less beneficial health and temperature outcomes than either of the other options, especially in less industrialized regions. We therefore conclude that aerosol‐related co‐benefits and aerosol accounting guidelines should be explicitly considered in setting international climate policy.
more » « less- Award ID(s):
- 1715557
- NSF-PAR ID:
- 10448069
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) reduction co‐benefits. As such, China has aggressively incentivized EV adoption, however much remains unknown with regard to EVs’ mitigation potential, including optimal vehicle type prioritization, power generation contingencies, effects of Clean Air regulations, and the ability of EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios with a chemistry transport model that assess the potential co‐benefits of EVs during an extreme winter air quality event. We find that regardless of power generation source, heavy‐duty vehicle (HDV) electrification consistently improves air quality in terms of NO2and fine particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the infamous January 2013 pollution episode (∼1% of total premature mortality). However, HDV electrification does not reduce GHG emissions without enhanced emission‐free electricity generation. In contrast, due to differing emission profiles, light‐duty vehicle (LDV) electrification in China consistently reduces GHG emissions (∼2 Mt CO2), but results in fewer air quality and human health improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and CO2reductions for LDV electrification are nearly double those of HDV electrification in present‐day (155M vs. 87M US$), but are within ∼25% when enhanced emission‐free generation is used to power them. Overall, we find only a modest benefit for EVs to ameliorate severe wintertime pollution events, and that continued emission reductions in the power generation sector will have the greatest human health and economic benefits.
-
Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensiveup-to-date and reliable information on anthropogenic emissions and removalsof greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with afast-track extension to 2019. Our dataset is global in coverage and includesCO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) andprovides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use,land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95thpercentile range) by combining statistical analysis and comparisons ofglobal emissions inventories and top-down atmospheric measurements with anexpert judgement informed by the relevant scientific literature. We identifyimportant data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-downatmospheric-based emissions estimates is relatively close for some F-gasspecies (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 % lower than top-down estimates in recent years. However, emissions from excluded F-gas species such aschlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) arecumulatively larger than the sum of the reported species. Using globalwarming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC),global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq.consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis ofglobal trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions haveincreased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that globalanthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was neverlarger than between 2000–2009 and 2009–2018. Our analysis further revealsthat there are no global sectors that show sustained reductions in GHGemissions. There are a number of countries that have reduced GHG emissionsover the past decade, but these reductions are comparatively modest andoutgrown by much larger emissions growth in some developing countries suchas China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investmentsin independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associatedwith this article (Minx et al., 2021) can be found at https://doi.org/10.5281/zenodo.5566761.more » « less
-
Abstract Air quality associated public health co-benefit may emerge from climate and energy policies aimed at reducing greenhouse gas (GHG) emissions. However, the distribution of these co-benefits has not been carefully studied, despite the opportunity to tailor mitigation efforts so they achieve maximum benefits within socially and economically disadvantaged communities (DACs). Here, we quantify such health co-benefits from different long-term, low-carbon scenarios in California and their distribution in the context of social vulnerability. The magnitude and distribution of health benefits, including within impacted communities, is found to varies among scenarios which reduce economy wide GHG emissions by 80% in 2050 depending on the technology- and fuel-switching decisions in individual end-use sectors. The building electrification focused decarbonization strategy achieves ~15% greater total health benefits than the truck electrification focused strategy which uses renewable fuels to meet building demands. Conversely, the enhanced electrification of the truck sector is shown to benefit DACs more effectively. Such tradeoffs highlight the importance of considering environmental justice implications in the development of climate mitigation planning.more » « less
-
Abstract The governance challenges embedded in climate change are daunting. Conventional logic holds that national and international action is necessary. While the United States is a major source of Greenhouse Gas (GHG) emissions – second only to China – national action on climate change has been lacking. However, hundreds of subnational US governments and thousands of industrial facilities are actively engaged in addressing climate change. Given the potential mismatch between the global nature of the problem and the policy reach of subnational governments, we evaluate the extent to which polycentric variation in subnational climate action is associated with changes in GHG emissions. We develop a unique data set that incudes facility‐level GHG emissions from major industrial sectors in the United States over 8 years and subnational climate governance action across all 50 states. This large‐N data set allows us to systematically test hypothesis from polycentric governance. This type of comparative analysis can help to better understand the conditions under which polycentric governance is associated with improved climate change outcomes, that is, declining GHG emissions. Our results suggest that even when controlling for past emissions, some elements of polycentric governance are associated with decreases in GHG emissions. Future research would benefit from augmenting the large N comparative analysis presented here with mixed methods research to more fully understand the dynamic processes shaping both climate policy and GHG emissions.