skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contributions of healthier diets and agricultural productivity toward sustainability and climate goals in the United States
Abstract Meeting ambitious climate targets will require deploying the full suite of mitigation options, including those that indirectly reduce greenhouse-gas (GHG) emissions. Healthy diets have sustainability co-benefits by directly reducing livestock emissions as well as indirectly reducing land use emissions. Increased crop productivity could indirectly avoid emissions by reducing cropland area. However, there is disagreement on the sustainability of proposed healthy U.S. diets and a lack of clarity on how long-term sustainability benefits may change in response to shifts in the livestock sector. Here, we explore the GHG emissions impacts of seven scenarios that vary U.S. crop yields and healthier diets in the U.S. and overseas. We also examine how impacts vary across assumptions of future ruminant livestock productivity and ruminant stocking density in the U.S. We employ two complementary land use models—the US FABLE Calculator, an agricultural and forestry sector accounting model with high agricultural commodity representation, and GLOBIOM, a spatially explicit partial equilibrium optimization model for global land use systems. Results suggest that healthier U.S. diets that follow the Dietary Guidelines for Americans reduce agricultural and land use greenhouse gas emissions by 25–57% (approx 120–310 MtCO2e/y) and pastureland area by 28–38%. The potential emissions and land sparing benefits of U.S. agricultural productivity growth are modest within the U.S. due to the increasing comparative advantage of U.S. crops. Our findings suggest that healthy U.S. diets can significantly contribute toward meeting U.S. long-term climate goals for the land use sectors.  more » « less
Award ID(s):
2019435
PAR ID:
10381735
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Sustainability Science
Volume:
18
Issue:
1
ISSN:
1862-4065
Page Range / eLocation ID:
p. 539-556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agriculture will play a central role in meeting greenhouse gas (GHG) emission targets, as the sector currently contributes ∼22% of global emissions. Because emissions are directly tied to resources employed in farm production, such as land, fertilizer, and ruminant animals, the productivity of input use tends to be inversely related to emissions intensity. We review evidence on how productivity gains in agriculture have contributed to historical changes in emissions, how they affect land use emissions both locally and globally, and how investments in research and development (R&D) affect productivity and therefore emissions. The world average agricultural emissions intensity fell by more than half since 1990, with a strong correlation between a region's agricultural productivity growth and reduction in emissions intensity. Additional investment in agricultural R&D offers an opportunity for cost-effective ( 
    more » « less
  2. Agriculture’s global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture’s environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change–reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products. 
    more » « less
  3. Abstract Livestock agriculture accounts for ∼15% of global anthropogenic greenhouse gas (GHG) emissions. Recently, natural climate solutions (NCS) have been identified to mitigate farm‐scale GHG emissions. Nevertheless, their impacts are difficult to quantify due to farm spatial heterogeneity and effort required to measure changes in carbon stocks. Remote sensing (RS) models are difficult to parameterize for heterogeneous agricultural landscapes. Eddy covariance (EC) in combination with novel techniques that quantitatively match source area variations could help update such vegetation‐specific parameters while accounting for pronounced heterogeneity. We evaluate a plant physiological parameter, the maximum quantum yield (MQY), which is commonly used to calculate gross and net primary productivity in RS applications. RS models often rely on spatially invariable MQY, which leads to inconsistencies between RS and EC models. We evaluate if EC data improve RS models by updating crop specific MQYs to quantify agricultural GHG mitigation potentials. We assessed how farm harvest compared to annual sums of (a) RS without improvements, (b) EC results, and (c) EC‐RS models. We then estimated emissions to calculate the annual GHG balance, including mitigation through plant carbon uptake. Our results indicate that EC‐RS models significantly improved the prediction of crop yields. The EC model captures diurnal variations in carbon dynamics in contrast to RS models based on input limitations. A net zero GHG balance indicated that perennial vegetation mitigated over 60% of emissions while comprising 40% of the landscape. We conclude that the combination of RS and EC can improve the quantification of NCS in agroecosystems. 
    more » « less
  4. Abstract The concept of sustainability inherently spans multiple spatial scales, sectors, variables, and time horizons. This study links a recently developed method of assessing present‐day agricultural sustainability across environmental, economic, and social dimensions with a process‐based integrated assessment model, in order to allow forward‐looking analysis of sustainability by region and scenario. The sustainable agriculture matrix estimates present‐day agricultural sustainability at the national level using 18 indicator variables, of which this study estimates nine to the year 2100, using an enhanced version of the Global Change Analysis Model. Scenarios include a reference scenario, and scenarios that apply the following measures, both individually and in combination, that are thought to improve sustainability: yield intensification, transition toward more plant‐based (“flexitarian”) diets, and economy‐wide greenhouse gas emissions mitigation. The scenarios illustrate considerable complexity and tradeoffs inherent to efforts to improve agricultural sustainability in all regions globally. For example, yield intensification typically increases nitrogen pollution, flexitarian diets can reduce agricultural output, and greenhouse gas mitigation efforts may either increase deforestation or crowd out crop and livestock production due to consequent bioenergy demands. However, there is considerable inter‐regional heterogeneity in the responses, and the importance of such secondary responses also differs by region. The analysis and post‐processing methods developed in this study allow quantification and visualization of the absolute and relative magnitude of the tradeoffs between agricultural sustainability indicator variables across regions, time periods, and scenarios. 
    more » « less
  5. Research investments in crop improvements, including by national and international agricultural research centers, have made significant contributions to raising yields of staple food crops in developing countries. Although mostly intended to improve food security and rural incomes, innovations in crop production also have major implications for the environment. Building on the latest productivity estimates from historical crop improvements in developing countries and using a gridded (0.25 degrees) equilibrium model of global agriculture, we assess the impacts of improved crop varieties on cropland use, threatened biodiversity, and terrestrial carbon stocks over 1961–2015. We replicate a historical baseline and produce a counterfactual scenario which shows the impact of omitting productivity improvements from these technologies. The results show that higher crop productivity generally lowered commodity prices, which reduced incentives to expand cropland except in those areas where productivity gains outweighed price declines. The net global effect of technology adoption was to limit conversion of natural habitat to agricultural use, although it did cause cropland to expand in some areas. We estimate that adoption of improved crop varieties in developing countries saved on net 16.03 [95% CI, 12.33 to 20.89] million hectares worldwide. With more natural habitat preserved, around 1,043 [95% CI, 616 to 1,503] threatened animal and plant species extinctions were avoided over this period. In addition, net land use savings from the improved crop varieties resulted in avoided terrestrial greenhouse gas (GHG) emissions of around 5.35 [95% CI, 3.75 to 7.22] billion metric tons CO2equivalent retained in terrestrial carbon stocks. 
    more » « less