skip to main content

Title: Contributions of healthier diets and agricultural productivity toward sustainability and climate goals in the United States

Meeting ambitious climate targets will require deploying the full suite of mitigation options, including those that indirectly reduce greenhouse-gas (GHG) emissions. Healthy diets have sustainability co-benefits by directly reducing livestock emissions as well as indirectly reducing land use emissions. Increased crop productivity could indirectly avoid emissions by reducing cropland area. However, there is disagreement on the sustainability of proposed healthy U.S. diets and a lack of clarity on how long-term sustainability benefits may change in response to shifts in the livestock sector. Here, we explore the GHG emissions impacts of seven scenarios that vary U.S. crop yields and healthier diets in the U.S. and overseas. We also examine how impacts vary across assumptions of future ruminant livestock productivity and ruminant stocking density in the U.S. We employ two complementary land use models—the US FABLE Calculator, an agricultural and forestry sector accounting model with high agricultural commodity representation, and GLOBIOM, a spatially explicit partial equilibrium optimization model for global land use systems. Results suggest that healthier U.S. diets that follow the Dietary Guidelines for Americans reduce agricultural and land use greenhouse gas emissions by 25–57% (approx 120–310 MtCO2e/y) and pastureland area by 28–38%. The potential emissions and land sparing benefits more » of U.S. agricultural productivity growth are modest within the U.S. due to the increasing comparative advantage of U.S. crops. Our findings suggest that healthy U.S. diets can significantly contribute toward meeting U.S. long-term climate goals for the land use sectors.

« less
; ; ; ; ;
Publication Date:
Journal Name:
Sustainability Science
Page Range or eLocation-ID:
p. 539-556
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent discussions of healthy and sustainable diets encourage increased consumption of plants and decreased consumption of animal-source foods (ASFs) for both human and environmental health. Seafood is often peripheral in these discussions. This paper examines the relative environmental costs of sourcing key nutrients from different kinds of seafood, other ASFs, and a range of plant-based foods. We linked a nutrient richness index for different foods to life cycle assessments of greenhouse gas (GHG) emissions in the production of these foods to evaluate nutritional benefits relative to this key indicator of environmental impacts. The lowest GHG emissions to meet average nutrient requirement values were found in grains, tubers, roots, seeds, wild-caught small pelagic fish, farmed carp and bivalve shellfish. The highest GHG emissions per nutrient supply are in beef, lamb, wild-caught prawns, farmed crustaceans, and pork. Among ASFs, some fish and shellfish have GHG emissions at least as low as plants and merit inclusion in food systems policymaking for their potential to support a healthy, sustainable diet. However, other aquatic species and production methods deliver nutrition to diets at environmental costs at least as high as land-based meat production. It is important to disaggregate seafood by species and production methodmore »in ‘planetary health diet’ advice.

    « less
  2. Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas, of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil naturalmore »gas, “green” hydrogen, is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage, which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However, the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).« less
  3. Sustainable provisioning of energy to society requires consideration of the nexus between food–energy–water (FEW) flows while meeting human needs and respecting nature's capacity to provide goods and services. In this work, we explore the FEW nexus of conventional and techno-ecologically synergistic (TES) systems by evaluating combinations of various technological, agricultural, and ecological strategies from the viewpoints of electricity generation, food production, life cycle water use, carbon footprint, nutrient runoff, corporate profitability, and societal well-being. We evaluate activities related to power generation (coal and gas extraction and use, transportation options, cooling technologies, solar panels, wind turbines), food production (farming with and without tillage), waste utilization (carbon dioxide capture and conversion to hydrocarbons, green hydrogen), and ecological restoration (forests and wetlands). Application of this framework to the Muskingum River watershed in Ohio, U.S.A. indicates that seeking synergies between human and natural systems can provide innovative solutions that improve the FEW nexus while making positive contributions to society with greater respect for nature's limits. We show that the conventional engineering approach of relying only on technological approaches for meeting sustainability objectives can have limited environmental and societal benefits while reducing profitability. In contrast, techno-ecologically synergistic design between agricultural systems and wetlands can reducemore »nutrient runoff with little compromise in other goals. Additional synergies between farming and photovoltaic systems along with the use of wetlands can further improve the FEW nexus while reducing CO 2 and nutrient emissions, with a relatively small compromise in corporate profitability. These results should motivate further work on innovative TES designs that can provide “win–win” solutions for meeting global energy needs in an environmentally and socially beneficial manner.« less
  4. Abstract Environmental merits are a common motivation for many urban agriculture (UA) projects. One powerful way of quantifying environmental impacts is with life cycle assessment (LCA): a method that estimates the environmental impacts of producing, using, and disposing of a good. LCAs of UA have proliferated in recent years, evaluating a diverse range of UA systems and generating mixed conclusions about their environmental performance. To clarify the varied literature, we performed a systematic review of LCAs of UA to answer the following questions: What is the scope of available LCAs of UA (geographic, crop choice, system type)? What is the environmental performance and resource intensity of diverse forms of UA? How have these LCAs been done, and does the quality and consistency allow the evidence to support decision making? We searched for original, peer-reviewed LCAs of agricultural production at UA systems, and selected and evaluated 47 papers fitting our analysis criteria, covering 88 different farms and 259 production systems. Focusing on yield, water consumption, greenhouse gas emissions, and cumulative energy demand, using functional units based on mass of crops grown and land occupied, we found a wide range of results. We summarized baseline ranges, identified trends across UA profiles, andmore »highlighted the most impactful parts of different systems. There were examples of all types of systems—across physical set up, crop type, and socio-economic orientation—achieving low and high impacts and yields, and performing better or worse than conventional agriculture. However, issues with the quality and consistency of the LCAs, the use of conventional agriculture data in UA settings, and the high variability in their results prevented us from drawing definitive conclusions about the environmental impacts and resource use of UA. We provided guidelines for improving LCAs of UA, and make a strong case that more research on this topic is necessary to improve our understanding of the environmental impacts and benefits of UA.« less
  5. Highlights Aquatic vegetation-based nutrient recovery offers an alternate approach for treating agricultural wastewater. Microalgae and duckweed can upcycle waste nutrients into valuable bio-based products. Producing feed, fertilizer, and fuel from manure-grown aquatic vegetation promotes a circular N-bioeconomy. Abstract . The massive amounts of nutrients that are currently released into the environment as waste have the potential to be recovered and transformed from a liability into an asset through photosynthesis, industry insight, and ecologically informed engineering design aimed at circularity. Fast-growing aquatic plant-like vegetation such as microalgae and duckweed have the capacity to enable local communities to simultaneously treat their own polluted water and retain nutrients that underlie the productivity of modern agriculture. Not only are they highly effective at upcycling waste nutrients into protein-rich biomass, microalgae and duckweed also offer excellent opportunities to substitute or complement conventional synthetic fertilizers, feedstocks in biorefineries, and livestock feed while simultaneously reducing the energy consumption and greenhouse gas emissions that would otherwise be required for their production and transport to farms. Integrated systems growing microalgae or duckweed on manure or agricultural runoff, and subsequent reuse of the harvested biomass to produce animal feed, soil amendments, and biofuels, present a sustainable approach to advancing circularitymore »in agricultural systems. This article provides a review of past efforts toward advancing the circular nitrogen bioeconomy using microalgae- and duckweed-based technologies to treat, recover, and upcycle nutrients from agricultural waste. The majority of the work with microalgae- and duckweed-based wastewater treatment has been concentrated on municipal and industrial effluents, with <50% of studies focusing on agricultural wastewater. In terms of scale, more than 91% of the microalgae-based studies and 58% of the duckweed-based studies were conducted at laboratory-scale. While the range of nutrient removals achieved using these technologies depends on various factors such as species, light, and media concentrations, 65% to 100% of total N, 82% to 100% of total P, 98% to 100% of NO3-, and 96% to 100% of NH3/NH4+ can be removed by treating wastewater with microalgae. For duckweed, removals of 75% to 98% total N, 81% to 93% total P, 72% to 98% NH3/NH4+, and 57% to 92% NO3- have been reported. Operating conditions such as hydraulic retention time, pH, temperature, and the presence of toxic nutrient levels and competing species in the media should be given due consideration when designing these systems to yield optimum benefits. In addition to in-depth studies and scientific advancements, policies encouraging supply chain development, market penetration, and consumer acceptance of these technologies are vitally needed to overcome challenges and to yield substantial socio-economic and environmental benefits from microalgae- and duckweed-based agricultural wastewater treatment. Keywords: Circular bioeconomy, Duckweed, Manure treatment, Microalgae, Nitrogen, Nutrient recycling, Wastewater treatment.« less