skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting defoliator abundance and defoliation measurements using Landsat‐based condition scores
Abstract Remote sensing imagery can provide critical information on the magnitude and extent of damage caused by forest pests and pathogens. However, monitoring short‐term changes in deciduous forest condition caused by defoliating insects is challenging and requires approaches that directly account for seasonal vegetation dynamics. We implemented a previously published harmonic modeling approach for forest condition monitoring in Google Earth Engine and systematically assessed the relative ability of condition change products generated using various model parameterizations for predicting pest abundances and defoliation during the 2016–2018 gypsy moth (Lymantria dispar) outbreak in southern New England. Our comparisons revealed that most models made reasonable predictions of changes in canopy condition and egg and larval abundances ofL. dispar, indicating a strong correlation between our harmonic‐based estimates of condition change and defoliator activity. The greatest differences in predictive ability were in the spectral domain, with assessments based on Tasseled Cap Greenness, Simple Ratio, and the Enhanced Vegetation Index ranking among the top models, and the commonly used Normalized Difference Vegetation Index consistently exhibiting poorer performance. We also observed notable differences in the magnitude of scores for different baseline periods. Additionally, we found that Landsat‐based condition scores better explained larval abundance than egg mass counts, which have historically been used as a proxy for later‐season larval abundance, indicating that our remote sensing approach may be more accurate and cost‐effective for generating consistent retrospective assessments ofL. disparpopulation abundance in addition to estimates of canopy damage. These findings provide important linkages between spectral changes detected using a harmonic modeling approach and biophysical aspects of defoliator activity, with potential to extend monitoring and prediction to regional or even continental scales.  more » « less
Award ID(s):
1832210
PAR ID:
10448144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ; ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Remote Sensing in Ecology and Conservation
Volume:
7
Issue:
4
ISSN:
2056-3485
Page Range / eLocation ID:
p. 592-609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimInvasive species are ideal systems for testing geographical differences in performance traits and measuring evolutionary responses as a species spreads across divergent climates and habitats. The European gypsy moth,Lymantria dispar disparL. (Lepidoptera: Erebidae), is a generalist forest defoliator introduced to Medford, Massachusetts, USA in 1869. The invasion front extends from Minnesota to North Carolina and the ability of this species to adapt to local climate may contribute to its continuing spread. We evaluated the performance of populations along the climatic gradient of the invasion front to test for a relationship between climate and ecologically important performance traits. LocationEastern United States of America TaxonLymantria dispar disparL. (Lepidoptera: Erebidae) MethodsInsects from 14 populations across the US invasion front and interior of the invasive range were reared from hatch to adult emergence in six constant temperature treatments. The responses of survival, pupal mass and larval development time were analysed as a function of source climate (annual mean normal temperature), rearing temperature and their interaction using multiple polynomial regression. ResultsWith the exception of female development time, there were no significant interactions between source climate and rearing temperature, indicating little divergence in the shape of thermal reaction norms among populations. Source population and rearing temperature were significant predictors of survival and pupal mass. Independent of rearing temperature, populations from warmer climates had lower survival than those from colder climates, but attained larger body size despite similar development times. Larval development time was dependent on rearing temperature, but there were not consistent relationships with source climate. Main ConclusionsThermal adaptation can be an important factor shaping the spread of invasive species, particularly in the context of climate change. Our results suggest thatL. d. disparis highly plastic, but has undergone climate‐related adaptation in thermal performance and life‐history traits as it spread across North America. 
    more » « less
  2. It is often logistically impractical to measure forest defoliation events in the field due to seasonal variability in larval feeding phenology (e.g., start, peak, and end) in any given year. As such, field data collections are either incomplete or at coarse temporal resolutions, both of which result in inaccurate estimation of annual defoliation (frass or foliage loss). Using Choristoneura pinus F. and Lymantria dispar dispar L., we present a novel approach that leverages a weather-driven insect simulation model (BioSIM) and defoliation field data. Our approach includes optimization of a weighting parameter (w) for each instar and imputation of defoliation. Results show a negative skew in this weighting parameter, where the second to last instar in a season exhibits the maxi- mum consumption and provides better estimates of annual frass and foliage biomass loss where sampling data gaps exist. Respective cross-validation RMSE (and normalized RMSE) results for C. pinus and L. dispar dispar are 77.53 kg·ha−¹ (0.16) and 38.24 kg·ha−¹ (0.02) for frass and 74.85 kg·ha−¹ (0.10) and 47.77 kg·ha−¹ (0.02) for foliage biomass loss imputation. Our method provides better estimates for ecosystem studies that leverage remote sensing data to scale defoliation rates from the field to broader landscapes and regions. 
    more » « less
  3. Abstract High temperature and accompanying high vapor pressure deficit often stress plants without causing distinctive changes in plant canopy structure and consequential spectral signatures. Sun‐induced chlorophyll fluorescence (SIF), because of its mechanistic link with photosynthesis, may better detect such stress than remote sensing techniques relying on spectral reflectance signatures of canopy structural changes. However, our understanding about physiological mechanisms of SIF and its unique potential for physiological stress detection remains less clear. In this study, we measured SIF at a high‐temperature experiment, Temperature Free‐Air Controlled Enhancement, to explore the potential of SIF for physiological investigations. The experiment provided a gradient of soybean canopy temperature with 1.5, 3.0, 4.5, and 6.0°C above the ambient canopy temperature in the open field environments. SIF yield, which is normalized by incident radiation and the fraction of absorbed photosynthetically active radiation, showed a high correlation with photosynthetic light use efficiency (r = 0.89) and captured dynamic plant responses to high‐temperature conditions. SIF yield was affected by canopy structural and plant physiological changes associated with high‐temperature stress (partial correlationr = 0.60 and −0.23). Near‐infrared reflectance of vegetation, only affected by canopy structural changes, was used to minimize the canopy structural impact on SIF yield and to retrieve physiological SIF yield (ΦF) signals. ΦFfurther excludes the canopy structural impact than SIF yield and indicates plant physiological variability, and we found that ΦFoutperformed SIF yield in responding to physiological stress (r = −0.37). Our findings highlight that ΦFsensitively responded to the physiological downregulation of soybean gross primary productivity under high temperature. ΦF, if reliably derived from satellite SIF, can support monitoring regional crop growth and different ecosystems' vegetation productivity under environmental stress and climate change. 
    more » « less
  4. Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology and response to environmental conditions. This analysis leverages both spectroscopic and phenological information to characterize vegetation communities in the Sundarban riverine mangrove forest of the Ganges–Brahmaputra delta. Parallel analyses of surface reflectance spectra from NASA’s EMIT imaging spectrometer and MODIS vegetation abundance time series (2000–2022) reveal the spectroscopic and phenological diversity of the Sundarban mangrove communities. A comparison of spectral and temporal feature spaces rendered with low-order principal components and 3D embeddings from Uniform Manifold Approximation and Projection (UMAP) reveals similar structures with multiple spectral and temporal endmembers and multiple internal amplitude continua for both EMIT reflectance and MODIS Enhanced Vegetation Index (EVI) phenology. The spectral and temporal feature spaces of the Sundarban represent independent observations sharing a common structure that is driven by the physical processes controlling tree canopy spectral properties and their temporal evolution. Spectral and phenological endmembers reside at the peripheries of the mangrove forest with multiple outward gradients in amplitude of reflectance and phenology within the forest. Longitudinal gradients of both phenology and reflectance amplitude coincide with LiDAR-derived gradients in tree canopy height and sub-canopy ground elevation, suggesting the influence of surface hydrology and sediment deposition. RGB composite maps of both linear (PC) and nonlinear (UMAP) 3D feature spaces reveal a strong contrast between the phenological and spectroscopic diversity of the eastern Sundarban and the less diverse western Sundarban. 
    more » « less
  5. Sankey, Temuulen; Van Den Broeke, Matthew (Ed.)
    Rapid impact assessment of cyclones on coastal ecosystems is critical for timely rescue and rehabilitation operations in highly human-dominated landscapes. Such assessments should also include damage assessments of vegetation for restoration planning in impacted natural landscapes. Our objective is to develop a remote sensing-based approach combining satellite data derived from optical (Sentinel-2), radar (Sentinel-1), and LiDAR (Global Ecosystem Dynamics Investigation) platforms for rapid assessment of post-cyclone inundation in nonforested areas and vegetation damage in a primarily forested ecosystem. We apply this multi-scalar approach for assessing damages caused by the cyclone Amphan that hit coastal India and Bangladesh in May 2020, severely flooding several districts in the two countries, and causing destruction to the Sundarban mangrove forests. Our analysis shows that at least 6821 sq. km. land across the 39 study districts was inundated even after 10 days after the cyclone. We further calculated the change in forest greenness as the difference in normalized difference vegetation index (NDVI) pre- and post-cyclone. Our findings indicate a <0.2 unit decline in NDVI in 3.45 sq. km. of the forest. Rapid assessment of post-cyclone damage in mangroves is challenging due to limited navigability of waterways, but critical for planning of mitigation and recovery measures. We demonstrate the utility of Otsu method, an automated statistical approach of the Google Earth Engine platform to identify inundated areas within days after a cyclone. Our radar-based inundation analysis advances current practices because it requires minimal user inputs, and is effective in the presence of high cloud cover. Such rapid assessment, when complemented with detailed information on species and vegetation composition, can inform appropriate restoration efforts in severely impacted regions and help decision makers efficiently manage resources for recovery and aid relief. We provide the datasets from this study on an open platform to aid in future research and planning endeavors. 
    more » « less