Abstract Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first‐order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated‐soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.
more »
« less
Utilization of Nonequilibrium Phase Change Approach to Analyze the Nonisothermal Multiphase Flow in Shallow Subsurface Soils
Abstract The prediction of coupled nonisothermal multiphase flow in porous media has been the subject of many theoretical and experimental studies in the past half a century. In particular, the evaporation phenomenon from the shallow subsurface has been extensively studied based on the notion of equilibrium phase change between liquid water and water vapor (i.e., instantaneous phase change). One of the frequent assumptions in equilibrium phase change approach is that liquid water is hydraulically connected throughout the vadose zone. Furthermore, classical soil‐water retention curves (e.g., van Genuchten model), which have been extensively used in the literature to model evaporation process, are only valid for high and intermediate saturation degrees. Although these limitations have been addressed and improved in separate studies, they have not yet been rigorously incorporated in the numerical modeling of nonisothermal multiphase flow in shallow subsurface of in‐field soils. Therefore, the aim of this study is to investigate the coupled heat, liquid, and vapor flow in soil media through the Hertz‐Knudsen‐Schrage (HKS) phase change model and by incorporating a water retention model which captures the soil‐water characteristics from full to oven‐dried saturation degrees. A numerical model is developed and validated against the in‐field experimental data. Reasonable agreements between the calculated and measured values of water contents at all depths, as well as the temperature, and cumulative evaporation are observed. Results also confirm that the contribution of the film flow in overall mass flow in the medium is required for accurate modeling and cannot be ignored.
more »
« less
- Award ID(s):
- 1804822
- PAR ID:
- 10448260
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 56
- Issue:
- 10
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To achieve high performance, the working pressure of liquid-fueled rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) is continuously increasing, which could reach the thermodynamic critical pressure of the liquid fuel. For this reason, the studies of trans- and super-critical injection are getting more attention. However, most of the multiphase researches were mainly concentrated on single- or two-component systems, which cannot capture the multicomponent phase change in real high-pressure engines and gas turbines. The phase boundary, especially near the critical points, needs to be accurately determined to investigate the multicomponent effects in transcritical flow. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the critical points. An in situ adaptive tabulation (ISAT) method was developed to accelerate the computation of the VLE model such that the expensive multicomponent VLE calculation can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to build a VLE-based CFD solver. In this work, simulations are conducted using our new VLE-based CFD solver to reveal the phase change effects in transcritical flow. Specifically, shock-droplet interaction are investigated to reveal the shock-driven high pressure phase change.more » « less
-
We extended a mechanistic, physics-based framework of the dry down process, previously developed for liquids and electrolytes, to solids and coded it into the latest UB/UC/P&G skin permeation model, herein renamed DigiSkin. The framework accounts for the phase change of the permeant from dissolved in a solvent (liquid) to precipitated on the skin surface (solid). The evaporation rate for the solid is reduced due to lower vapor pressure for the solid state versus subcooled liquid. These vapor pressures may differ by two orders of magnitude. The solid may gradually redissolve and penetrate the skin. The framework was tested by simulating the in vitro human skin permeation of the 38 cosmetically relevant solid compounds reported by Hewitt et al., J. Appl. Toxicol. 2019, 1-13. The more detailed handling of the evaporation process greatly improved DigiSkin evaporation predictions (r^2 = 0.89). Further, we developed a model reliability prediction score classification using diverse protein reactivity data and identified that 15 of 38 compounds are out of model scope. Dermal delivery predictions for the remaining chemicals have excellent agreement with experimental data. The analysis highlighted the sensitivity of water solubility and equilibrium vapor pressure values on the DigiSkin predictions outcomes influencing agreement with the experimental observations.more » « less
-
We extended a mechanistic, physics-based framework of the dry down process, previously developed for liquids and electrolytes, to solids and coded it into the latest UB/UC/P&G skin permeation model, herein renamed DigiSkin. The framework accounts for the phase change of the permeant from dissolved in a solvent (liquid) to precipitated on the skin surface (solid). The evaporation rate for the solid is reduced due to lower vapor pressure for the solid state versus subcooled liquid. These vapor pressures may differ by two orders of magnitude. The solid may gradually redissolve and penetrate the skin. The framework was tested by simulating the in vitro human skin permeation of the 38 cosmetically relevant solid compounds reported by Hewitt et al., J. Appl. Toxicol. 2019, 1-13. The more detailed handling of the evaporation process greatly improved DigiSkin evaporation predictions (r2 = 0.89). Further, we developed a model reliability prediction score classification using diverse protein reactivity data and identified that 15 of 38 compounds are out of model scope. Dermal delivery predictions for the remaining chemicals have excellent agreement with experimental data. The analysis highlighted the sensitivity of water solubility and equilibrium vapor pressure values on the DigiSkin predictions outcomes influencing agreement with the experimental observations.more » « less
-
null (Ed.)Due to the longer auto-ignition time with liquid fuels compared with hydrogen, the understanding of interaction of shock waves with sprays and the subsequent vapor mixing is significant to design ramjets/scramjets with liquid fuel sprays. In this study, an Eulerian-Lagrangian framework is developed based on the OpenFOAM platform. In this solver, detailed multi-component transport models for Eulerian gas-phase species properties are included. In addition, Lagrangian spray break-up, atomization and evaporation models are added to simulate liquid phase. In addition, an equilibrium wall function is added to model the near-wall properties. The newly developed solver is used to conduct large eddy simulations (LES) on non-reactive liquid jets in supersonic crossflow (JISCF) with liquid sprays. The liquid penetration length are compared with the experimental data, showing a very good agreement. Effects of evaporation and fuel properties (e.g., heat capacity and enthalpy of evaporation) on penetration length, temperature, Sauter mean diameter (SMD) and volumetric parcel flux are discussed in this study. It is shown that evaporation effects primarily show up in the temperature field. For n-heptane sprays, such impact could be conducted to other properties of the flow field like spray plume size, particle size distribution and volumetric flux, which is caused by the smaller enthalpy of evaporation and heat capacity comparing to water. Full version of this paper has been published as a journal article: Shufan Zou, Dezhi Zhou, Suo Yang, “Effects of Evaporation and Fuel Properties on Liquid Jets in Supersonic Crossflow: a Computational study using a compressible Eulerian-Lagrangian solver”, Atomization and Sprays 30 (9) (2020) 675-696. https://doi.org/10.1615/AtomizSpr.2020034860more » « less
An official website of the United States government
