skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strain‐Induced Orbital Contributions to Oxygen Electrocatalysis in Transition‐Metal Perovskites
Abstract Epitaxial strain has been shown to produce dramatic changes to the orbital structure in transition metal perovskite oxides and, in turn, the rate of oxygen electrocatalysis therein. Here, epitaxial strain is used to investigate the relationship between surface electronic structure and oxygen electrocatalysis in prototypical fuel cell cathode systems. Combining high‐temperature electrical‐conductivity‐relaxation studies and synchrotron‐based X‐ray absorption spectroscopy studies of La0.5Sr0.5CoO3and La0.8Sr0.2Co0.2Fe0.8O3thin films under varying degrees of epitaxial strain reveals a strong correlation between orbital structure and catalysis rates. In both systems, films under biaxial tensile strain simultaneously exhibit the fastest reaction kinetics and lowest electron occupation in thedz2orbitals. These results are discussed in the context of broader chemical trends and electronic descriptors are proposed for oxygen electrocatalysis in transition metal perovskite oxides.  more » « less
Award ID(s):
2102895 1708615
PAR ID:
10448382
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
11
Issue:
46
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems. 
    more » « less
  2. Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories. 
    more » « less
  3. Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5 d -electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO 3 . We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO 3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO 3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO 3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5 d transition-metal oxide thin films can be an ideal building block for low-power spintronics. 
    more » « less
  4. Abstract Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability tocontinuouslytune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ(LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (withδ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (withδ= 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications. 
    more » « less
  5. Abstract The ability to tailor a new crystalline structure and associated functionalities with a variety of stimuli is one of the key issues in material design. Developing synthetic routes to functional materials with partially absorbed nonmetallic elements (i.e., hydrogen and nitrogen) can open up more possibilities for preparing novel families of electronically active oxide compounds. Fast and reversible uptake and release of hydrogen in epitaxial ABO3manganite films through an adapted low‐frequency inductively coupled plasma technology is introduced. Compared with traditional dopants of metallic cations, the plasma‐assisted hydrogen implantations not only produce reversibly structural transformations from pristine perovskite (PV) phase to a newly found protonation‐driven brownmillerite one but also regulate remarkably different electronic properties driving the material from a ferromagnetic metal to a weakly ferromagnetic insulator for a range of manganite (La1−xSrxMnO3) thin films. Moreover, a reversible perovskite‐brownmillerite‐perovskite transition is achieved at a relatively low temperature (T≤ 350 °C), enabling multifunctional modulations for integrated electronic systems. The fast, low‐temperature control of structural and electronic properties by the facile hydrogenation/dehydrogenation treatment substantially widens the space for exploring new possibilities of novel properties in proton‐based multifunctional materials. 
    more » « less