Refractory high‐entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy‐design principles, a single‐phase body‐centered‐cubic (BCC) CrMoNbV RHEA with high‐temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high‐temperature strength is revealed by in situ neutron scattering, transmission‐electron microscopy, and first‐principles calculations. The CrMoNbV's elevated‐temperature strength retention up to 1273 K arises from its large atomic‐size and elastic‐modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non‐screw character dislocations caused by the strong solute pinning, which makes the solid‐solution strengthening pronounced. The alloy‐design principles and the insights in this study pave the way to design RHEAs with outstanding high‐temperature strength.
more » « less- Award ID(s):
- 1809640
- PAR ID:
- 10448431
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 33
- Issue:
- 48
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young’s, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation–dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy.more » « less
-
Refractory high entropy alloys (RHEAs) have gained significant attention in recent years as potential replacements for Ni-based superalloys in gas turbine applications. Improving their properties, such as their high-temperature yield strength, is crucial to their success. Unfortunately, exploring this vast chemical space using exclusively experimental approaches is impractical due to the considerable cost of the synthesis, processing, and testing of candidate alloys, particularly at operation-relevant temperatures. On the other hand, the lack of reasonably accurate predictive property models, especially for high-temperature properties, makes traditional Integrated Computational Materials Engineering (ICME) methods inadequate. In this paper, we address this challenge by combining machine-learning models, easy-to-implement physics-based models, and inexpensive proxy experimental data to develop robust and fast-acting models using the concept of Bayesian updating. The framework combines data from one of the most comprehensive databases on RHEAs (Borg et al., 2020) with one of the most widely used physics-based strength models for BCC-based RHEAs (Maresca and Curtin, 2020) into a compact predictive model that is significantly more accurate than the state-of-the-art. This model is cross-validated, tested for physics-informed extrapolation, and rigorously benchmarked against standard Gaussian process regressors (GPRs) in a toy Bayesian optimization problem. Such a model can be used as a tool within ICME frameworks to screen for RHEAs with superior high-temperature properties. The code associated with this work is available at: https://codeocean.com/capsule/7849853/tree/v2.more » « less
-
Additive Manufacturing (AM) has opened new frontiers for the design of refractory high-entropy alloys (HEAs) for high-temperature applications. The thermal conductivity of the AM feedstock is among the most important thermo-physical properties that control the melting and solidification process. Despite its significance, there remains a notable gap in both computational and experimental research concerning the thermal conductivity of HEAs. Here, we use density functional theory (DFT) to systematically investigate the alloying effects on the transport properties of Ti-Cr-Mo-W-V-Nb-Ta RHEAs, including electrical and thermal conductivities and the Seebeck coefficient. The relaxation time of charge carriers is a key underlying parameter determining thermal conductivity that is exceedingly challenging to predict from first principles alone, and we thus follow the approach by Mukherjee, Satsangi, and Singh [Chem Mater 32, 6507 (2022)] to optimize the relaxation time for RHEAs. We validated thermal conductivity predictions on elemental solids, binary and ternary alloys, and RHEAs and compared them against thermodynamic (CALPHAD) predictions and our experiments with good correlations. To understand observed trends in thermal conductivity, we assessed the phase stability, electronic structure, phonon, and intrinsic- and tensile strength of down-selected RHEAs. Our electronic structure and phonon results connect well with the observed compositional trends for thermal transport in RHEAs. Our DFT assessment and CALPHAD predictions provide a unique design guide for RHEAs with tailored thermal conductivity, a critical consideration for AM and thermal-management applications.more » « less
-
Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration.more » « less
-
FeCrAl cladding is one of the candidate materials for the near‐term accident‐tolerant fuel technologies under development. Research on high‐temperature mechanical behaviors of single‐crystal FeCrAl alloy is rather limited. Previous studies have reported the mechanical property of low‐index orientation in single‐crystal FeCrAl alloy at room temperature. However, the critical resolved shear stress to activate slip systems can be orientation and temperature dependent. Here, single‐crystal grains in a coarse‐grained FeCrAl alloy with different crystallographic orientations are selected to preferentially activate {110}<111> slip systems or {112}<111> slip systems. Micropillars are fabricated in the selected single‐crystal grains and tested at elevated temperatures in situ in a scanning electron microscope. The critical resolved shear stresses of {110}<111> slip systems and {112}<111> slip systems are determined at various temperatures. The critical resolved shear stress shows a temperature dependence and orientation independence. This study provides important insight for understanding the deformation mechanisms of FeCrAl alloys at elevated temperatures.