Abstract Skeletal muscle has a remarkable regeneration capacity to recover its structure and function after injury, except for the traumatic loss of critical muscle volume, called volumetric muscle loss (VML). Although many extremity VML models have been conducted, craniofacial VML has not been well‐studied due to unavailable in vivo assay tools. Here, this paper reports a wireless, noninvasive nanomembrane system that integrates skin‐wearable printed sensors and electronics for real‐time, continuous monitoring of VML on craniofacial muscles. The craniofacial VML model, using biopsy punch‐induced masseter muscle injury, shows impaired muscle regeneration. To measure the electrophysiology of small and round masseter muscles of active mice during mastication, a wearable nanomembrane system with stretchable graphene sensors that can be laminated to the skin over target muscles is utilized. The noninvasive system provides highly sensitive electromyogram detection on masseter muscles with or without VML injury. Furthermore, it is demonstrated that the wireless sensor can monitor the recovery after transplantation surgery for craniofacial VML. Overall, the presented study shows the enormous potential of the masseter muscle VML injury model and wearable assay tool for the mechanism study and the therapeutic development of craniofacial VML.
more »
« less
Fully Integrated, Stretchable, Wireless Skin‐Conformal Bioelectronics for Continuous Stress Monitoring in Daily Life
Abstract Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor.
more »
« less
- Award ID(s):
- 1939094
- PAR ID:
- 10456678
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 7
- Issue:
- 15
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Health monitoring of structures and people requires the integration of sensors and devices on various 3D curvilinear, hierarchically structured, and even dynamically changing surfaces. Therefore, it is highly desirable to explore conformal manufacturing techniques to fabricate and integrate soft deformable devices on complex 3D curvilinear surfaces. Although planar fabrication methods are not directly suitable to manufacture conformal devices on 3D curvilinear surfaces, they can be combined with stretchable structures and the use of transfer printing or assembly methods to enable the device integration on 3D surfaces. Combined with functional nanomaterials, various direct printing and writing methods have also been developed to fabricate conformal electronics on curved surfaces with intimate contact even over a large area. After a brief summary of the recent advancement of the recent conformal manufacturing techniques, we also discuss the challenges and potential opportunities for future development in this burgeoning field of conformal electronics on complex 3D surfaces.more » « less
-
Abstract The practical applications of skin‐interfaced sensors and devices in daily life hinge on the rational design of surface wettability to maintain device integrity and achieve improved sensing performance under complex hydrated conditions. Various bioinspired strategies have been implemented to engineer desired surface wettability for varying hydrated conditions. Although the bodily fluids can negatively affect the device performance, they also provide a rich reservoir of health‐relevant information and sustained energy for next‐generation stretchable self‐powered devices. As a result, the design and manipulation of the surface wettability are critical to effectively control the liquid behavior on the device surface for enhanced performance. The sensors and devices with engineered surface wettability can collect and analyze health biomarkers while being minimally affected by bodily fluids or ambient humid environments. The energy harvesters also benefit from surface wettability design to achieve enhanced performance for powering on‐body electronics. This review first summarizes the commonly used approaches to tune the surface wettability for target applications toward skin‐interfaced sensors and devices. By considering the existing challenges, one also discusses the opportunities as a small fraction of potential future developments, which can lead to a new class of skin‐interfaced devices for use in digital health and personalized medicine.more » « less
-
Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.more » « less
-
Abstract Recent developments of micro‐sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain‐isolating materials, hybrid interfacial physics, and soft material packaging for a strain‐isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor‐embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard‐soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real‐time, continuous physiological data, including high‐quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real‐world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.more » « less
An official website of the United States government
