skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of liquid conductance on the temporal evolution of self-organization patterns in atmospheric pressure DC glow discharges
Abstract Self-Organized Patterns (SOPs) at plasma-liquid interface in atmospheric pressure plasma discharges refer to the formation of intricate and puzzling structures due to the interplay of electrodynamic and hydrodynamic processes. Studies conducted to date have shown that this phenomenon results in the formation of distinctive patterns such as circular ring, star, gear, dots, spikes, etc., and primarily depends on working gas, electrolyte type, gap distance, current, conductivity, etc. However, an adequate understanding of how these patterns change from one type to another is still not available. This study aims to elucidate the influence of initial liquid conductance ( σ i ) on the temporal evolution of SOPs in liquid-anode discharges. The discharge was generated in a pin-to-liquid anode configuration at a constant helium (He) flow rate of 500 sccm and DC applied voltage of 6 kV at a gap distance of 12 mm. Through the gradual increment of σ i from 1.8 μ S to 4820 μ S, we observe that the trend in the evolution of SOPS takes place as solid discs, spikes, dots, rings, double rings, and stars. The continuous formation of reactive species onto the liquid anode in all conductive solutions results in a decrease in pH, an increase in bulk liquid temperature, and an increase in total dissolved solutes, and these have been confirmed through experimental measurements. Observations using optical emission spectroscopy show that the electrons at the plasma-liquid interface participate in the reduction of cations followed by their excitation & ionization due to which electron density as well as emissions from excited species (mainly hydroxyl radicals & excited nitrogen) decrease with time. Our investigation provides experimental evidence on the presence of cations at the plasma-liquid interface required for SOP formation.  more » « less
Award ID(s):
2148653
PAR ID:
10448643
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physica Scripta
Volume:
98
Issue:
9
ISSN:
0031-8949
Page Range / eLocation ID:
095602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The interactions between plasma and liquid solutions give rise to the formation of chemically reactive species useful for many applications, but the mass transport in the interfacial region is usually limited and not fully understood. In this work, we report on the observation and explanation of droplet ejection at the plasma–liquid interface of a one-atmosphere glow discharge with the liquid anode. The impact of droplets emission on plasma properties is also analyzed by spectroscopy. The process, which is an efficient mass and charge transport mechanism, apparently occurs during discharge operation and thus constitutes a feedback vehicle between the discharge and the liquid. Distinctive from the well-known Talyor cone droplets associated with liquid cathodes, the observed droplets originate from the bubbles due to electrolysis and solvated air which does not require strong electric field at liquid surface. Instead, the droplets are ejected by bubble cavity rupture at the plasma–liquid interface and their size, initial speed are strongly dependent on the gravity, inertia and capillarity. The droplets emerge near the plasma attachment and are subsequently vaporized, emitting intense UV and visible light, which originated from excited OH radicals and sodium derived from the liquid electrolyte. Spectroscopy analysis confirmed that the bursting droplets generally reduce the gas temperature while their effects on electron density depend on the composition of the liquid anode. Results also show that droplets from NaCl solution increase the plasma electron density due to the lower ionization potential of sodium. These findings reveal a new mechanism for discharge maintenance and mass transport as well as suggest a simple approach to dispersing plasma-activated liquid into the gas phase and thus enhancing plasma–liquid interaction. 
    more » « less
  2. Abstract In an atmospheric DC glow discharge with liquid anode, the plasma attachment under certain conditions self-organize into coherent patterns at the anode. Optical emission spectroscopy revealed that attachment emission consists primarily of the second positive system of nitrogen N2(C-B) whose excitation energy is low and sensitive to the change of electron energy distribution. Besides the electrons, negative ions can also accumulate in the anode sheath and affect the local space charge. It has been conjectured that these negative ions play a role in pattern formation at the anode surface. In this work, the role of oxygen negative ions was explored. It was found that the establishment of anode patterns requires at least a 7 % volume fraction of oxygen in the ambient gas. Results showed that at least in this work, O2- is the dominant negative ion species and has a density ~10^13 cm^-3. While the presence of oxygen appears crucial to pattern formation, this study indicated that the mere presence of the negative ions itself was not sufficient for pattern formation, suggesting a more complex mechanism involving electronegative species must be present. In fact, it was found that even when as many as 67 % of negative ions in the plasma were detached, no obvious geometry changes were observed in the self-organized pattern. 
    more » « less
  3. Guharay, S; Wada, M (Ed.)
    At or near atmospheric pressure, overvolted gas breakdown results in a streamer formation. In many applications of non-thermal plasma where efficient excited species generation is critical, the streamers are quenched to prevent it from reaching the arc phase. This can be achieved by repetitive nano second pulsing or dielectric barrier discharges were the dielectric charging quenches the arc formation. In such discharges, the plasma characteristics such as electron and ion densities and the production of excited species is determined by the streamer properties. Over the past five decades, a vast amount of experimental and computational work has been accumulated to establish a well-accepted theory of streamer formation and propagation. In this article we discuss the fluid models for streamers and quantify some macroscopic properties which can inform specific applications. We discuss in detail the fluid equations needed to model streamers and several schemes of parametrization of the transport and electron collisional processes. From an application point of view, the steamer simulations are used to quantify the excited species production by electron impact. This information is used to predict the specific outcomes via the plasma chemical conversion pathways. We present results of streamer discharges for three applications which are of technological importance to illustrate this approach: Plasma-assisted combustion, remediation of toxic gases, and plasma medicine. For plasma-assisted combustion the results of hydrogen ignition are discussed since non-hydrocarbon-based fuels such as hydrogen and ammonia are potential fuel candidates to reduce greenhouse gases. For the remediation of toxic gases, we discuss the removal of SOX/NOx from flue gas. Plasma medicine is a relatively new field and repetitive nano-second pulsed discharges in a helium gas carrier shows promise as a reactive plasma source for treating biological material. We discuss the helium metastable production in a streamer discharge since this species leads to the production of OH radicals which plays an important role. 
    more » « less
  4. Abstract Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond. 
    more » « less
  5. Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures. 
    more » « less