skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Potential of DAS in Teleseismic Studies: Insights From the Goldstone Experiment
Abstract Distributed acoustic sensing (DAS) is a recently developed technique that has demonstrated its utility in the oil and gas industry. Here we demonstrate the potential of DAS in teleseismic studies using the Goldstone OpticaL Fiber Seismic experiment in Goldstone, California. By analyzing teleseismic waveforms from the 10 January 2018 M7.5 Honduras earthquake recorded on ~5,000 DAS channels and the nearby broadband station GSC, we first compute receiver functions for DAS channels using the vertical‐component GSC velocity as an approximation for the incident source wavelet. The MohoP‐to‐sconversions are clearly visible on DAS receiver functions. We then derive meter‐scale arrival time measurements along the entire 20‐km‐long array. We are also able to measure path‐averaged Rayleigh wave group velocity and local Rayleigh wave phase velocity. The latter, however, has large uncertainties. Our study suggests that DAS will likely play an important role in many fields of passive seismology in the near future.  more » « less
Award ID(s):
1722879 1829496
PAR ID:
10448860
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
3
ISSN:
0094-8276
Page Range / eLocation ID:
p. 1320-1328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We construct a new shear velocity model for the San Gabriel, Chino and San Bernardino basins located in the northern Los Angeles area using ambient noise correlation between dense linear nodal arrays, broadband stations, and accelerometers. We observe Rayleigh and Love waves in the correlation of vertical (Z) and transverse (T) components, respectively. By combining Hilbert and Wavelet transforms, we obtain the separated fundamental and first higher mode of the Rayleigh wave dispersion curves based on their distinct particle motion polarization. Basin depths constrained by receiver functions, gravity, and borehole data are incorporated into the prior model. Our 3D shear wave velocity model covers the upper 3–5 km of the crust in the San Gabriel, Chino and San Bernardino basin area. The Vs model is in agreement with the geological and geophysical cross‐sections from other studies, but discrepancies exist between our model and a Southern California Earthquake Center community velocity model. Our shear wave velocity model shows good consistency with the CVMS 4.26 in the San Gabriel basin, but predicts a deeper and slower sedimentary basin in the San Bernardino and Chino basins than the community model. 
    more » « less
  2. Abstract Significant interest has developed in using optical fibers for seismology through Distributed Acoustic Sensing (DAS). However, converting DAS strain measurements to actual ground motions can result in errors and uncertainties due to imperfect coupling of the fiber to the earth and instrument response functions. To address this, we conducted a comparative analysis of strain data recorded by DAS, Optical Fiber Strainmeters (OFSs), and estimates derived from seismic data. This study used dark fibers in a commercial cable connecting two islands in Puget Sound, Washington, USA. The cable extends from a telecommunication substation on Whidbey Island, through an underground conduit, and across Saratoga Passage to Camano Island. The strain along the cable was recorded using OFS Michelson interferometers and a DAS interrogator, with a broadband seismometer positioned at one end. Comparing a teleseismic earthquake recording showed that summed DAS channels agreed well with OFS recordings. The amplitude discrepancies between the measurements and the seismometer's estimated strain indicated poor coupling between the cable and the earth. We also evaluated DAS amplitude response using a piezoelectric cylinder (PZT) to generate ground truth strain. The findings revealed a notable amplitude decrease in DAS recordings at lower frequencies, highlighting the need for amplitude calibration. Moreover, some underwater signals in the study area were strongly correlated with the velocity of the tidal current. These signals can be localized through coherence calculations between the DAS and OFS recordings. 
    more » « less
  3. Abstract Seismicity of several intraplate seismic zones in the North American midcontinent is believed to be related to reactivation of ancient faults in Precambrian continental rifts by the contemporary stress field. Existence of such a rift system beneath the Wabash Valley Seismic Zone (WVSZ) is not clear. Here we obtained a crustal structural image along a 300‐km‐long profile across WVSZ using a dense linear seismic array. We first calculated teleseismic receiver functions of stations and applied the Common‐Conversion‐Point stacking method to image crustal interfaces and the Moho. We then used ambient noise cross correlation to obtain phase and group velocities of Rayleigh and Love waves. Finally, we jointly inverted the receiver function and surface wave dispersion data to determine shear wave velocity structure along the profile. The results show a thick (50‐ to 60‐km) crust with a typical Proterozoic crustal layering: a 1‐ to 2‐km thick Phanerozoic sedimentary layer, an upper crust ∼15 km thick, and a 30‐ to 40‐km‐thick lower crust. The unprecedented high‐resolution image also reveals a 50‐km‐wide high‐velocity body above an uplifted Moho and several velocity anomalies in the upper and middle crust beneath the La Salle Deformation Belt. We interpreted them as features produced by magmatic intrusions in a failed, immature continental rift during the end of Precambrian. Current seismicity in WVSZ is likely due to reactivation of ancient faults of the rift system by a combination of stress fields from the far‐field plate motion and prominent crustal and upper mantle heterogeneities in the region. 
    more » « less
  4. Abstract Distributed acoustic sensing (DAS) provides dense arrays ideal for seismic tomography. However, DAS only records average axial strain change along the cable, which can complicate the interpretation of surface-wave observations. With a rectangular DAS array located in the City of Oxnard, California, we compare phase velocity dispersion at the same location illuminated by differently oriented virtual sources. The dispersion curves are consistent for colinear and noncolinear virtual sources, suggesting that surface-wave observations in most of the cross-correlations are dominated by Rayleigh waves. Our measurements confirm that colinear channel pairs provide higher Rayleigh-wave signal-to-noise ratio (SNR). For cross-correlations of noncolinear channel pairs, the travel time of each connecting ray path can still be obtained despite the lower SNR of Rayleigh wave signals. The inverted Rayleigh-wave dispersion map reveals an ancient river channel consistent with the local geologic map. Our results demonstrate the potential of DAS-based 2D surface-wave tomography without special treatment of directional sensitivity in areas where one type of wave is dominating or can be identified. 
    more » « less
  5. Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments. 
    more » « less