Abstract Distributed Acoustic Sensing (DAS) is an emerging technology that converts optical fibers into dense arrays of strainmeters, significantly enhancing our understanding of earthquake physics and Earth's structure. While most past DAS studies have focused primarily on seismic wave phase information, accurate measurements of true ground motion amplitudes are crucial for comprehensive future analyses. However, amplitudes in DAS recordings, especially for pre‐existing telecommunication cables with uncertain fiber‐ground coupling, have not been fully quantified. By calibrating three DAS arrays with co‐located seismometers, we systematically evaluate DAS amplitudes. Our results indicate that the average DAS amplitude of earthquake signals closely matches that of co‐located seismometer data across frequencies from 0.01 to 10 Hz. The noise floor of DAS is comparable to that of strong‐motion stations but higher than that of broadband stations. The saturation amplitude of DAS is adjustable by modifying the pulse repetition rate and gauge length. We also demonstrate how our findings enhance the understanding of fiber‐optic seismology and its implications for natural hazard mitigation and Earth structure imaging and monitoring. Specifically, our results suggest that with proper settings, DAS can detectP‐waves from an M6+ earthquake occurring 10 km from the cable without saturation, indicating its viability for earthquake early warning. Through quantitative comparison and analysis, we also find that local ambient traffic noise levels strongly affect the quality of seismic interferometry measurement, which is a powerful tool for near‐surface imaging and monitoring. Our methodology and findings are valuable for future DAS experiments that require precise seismic amplitude measurements. 
                        more » 
                        « less   
                    
                            
                            Calibrating Strain Measurements: A Comparative Study of DAS, Strainmeter, and Seismic Data
                        
                    
    
            Abstract Significant interest has developed in using optical fibers for seismology through Distributed Acoustic Sensing (DAS). However, converting DAS strain measurements to actual ground motions can result in errors and uncertainties due to imperfect coupling of the fiber to the earth and instrument response functions. To address this, we conducted a comparative analysis of strain data recorded by DAS, Optical Fiber Strainmeters (OFSs), and estimates derived from seismic data. This study used dark fibers in a commercial cable connecting two islands in Puget Sound, Washington, USA. The cable extends from a telecommunication substation on Whidbey Island, through an underground conduit, and across Saratoga Passage to Camano Island. The strain along the cable was recorded using OFS Michelson interferometers and a DAS interrogator, with a broadband seismometer positioned at one end. Comparing a teleseismic earthquake recording showed that summed DAS channels agreed well with OFS recordings. The amplitude discrepancies between the measurements and the seismometer's estimated strain indicated poor coupling between the cable and the earth. We also evaluated DAS amplitude response using a piezoelectric cylinder (PZT) to generate ground truth strain. The findings revealed a notable amplitude decrease in DAS recordings at lower frequencies, highlighting the need for amplitude calibration. Moreover, some underwater signals in the study area were strongly correlated with the velocity of the tidal current. These signals can be localized through coherence calculations between the DAS and OFS recordings. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2211068
- PAR ID:
- 10576722
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantitative dynamic strain measurements of the ground would be useful for engineering scale problems such as monitoring for natural hazards, soil-structure interaction studies, and non-invasive site investigation using full waveform inversion (FWI). Distributed acoustic sensing (DAS), a promising technology for these purposes, needs to be better understood in terms of its directional sensitivity, spatial position, and amplitude for application to engineering-scale problems. This study investigates whether the physical measurements made using DAS are consistent with the theoretical transfer function, reception patterns, and experimental measurements of ground strain made by geophones. Results show that DAS and geophone measurements are consistent in both phase and amplitude for broadband (10 s of Hz), high amplitude (10 s of microstrain), and complex wavefields originating from different positions around the array when: (1) the DAS channels and geophone locations are properly aligned, (2) the DAS cable provides good deformation coupling to the internal optical fiber, (3) the cable is coupled to the ground through direct burial and compaction, and (4) laser frequency drift is mitigated in the DAS measurements. The transfer function of DAS arrays is presented considering the gauge length, pulse shape, and cable design. The theoretical relationship between DAS-measured and pointwise strain for vertical and horizontal active sources is introduced using 3D elastic finite-difference simulations. The implications of using DAS strain measurements are discussed including directionality and magnitude differences between the actual and DAS-measured strain fields. Estimating measurement quality based on the wavelength-to-gauge length ratio for field data is demonstrated. A method for spatially aligning the DAS channels with the geophone locations at tolerances less than the spatial resolution of a DAS system is proposed.more » « less
- 
            Abstract Distributed acoustic sensing (DAS) was originally intended to measure oscillatory strain at frequencies of 1 Hz or more on a fiber optic cable. Recently, measurements at much lower frequencies have opened the possibility of using DAS as a dynamic strain sensor in boreholes. A fiber optic cable mechanically coupled to a geologic formation will strain in response to hydraulic stresses in pores and fractures. A DAS interrogator can measure dynamic strain in the borehole, which can be related to fluid pressure through the mechanical compliance properties of the formation. Because DAS makes distributed measurements, it is capable of both locating hydraulically active features and quantifying the fluid pressure in the formation. We present field experiments in which a fiber optic cable was mechanically coupled to two crystalline rock boreholes. The formation was stressed hydraulically at another well using alternating injection and pumping. The DAS instrument measured oscillating strain at the location of a fracture zone known to be hydraulically active. Rock displacements of less than 1 nm were measured. Laboratory experiments confirm that displacement is measured correctly. These results suggest that fiber optic cable embedded in geologic formations may be used to map hydraulic connections in three‐dimensional fracture networks. A great advantage of this approach is that strain, an indirect measure of hydraulic stress, can be measured without beforehand knowledge of flowing fractures that intersect boreholes. The technology has obvious applications in water resources, geothermal energy, CO2sequestration, and remediation of groundwater in fractured bedrock.more » « less
- 
            Abstract Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (dv/v).dv/vdrops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution.more » « less
- 
            SUMMARY Distributed acoustic sensing (DAS) networks promise to revolutionize observational seismology by providing cost-effective, highly dense spatial sampling of the seismic wavefield, especially by utilizing pre-deployed telecomm fibre in urban settings for which dense seismic network deployments are difficult to construct. However, each DAS channel is sensitive only to one projection of the horizontal strain tensor and therefore gives an incomplete picture of the horizontal seismic wavefield, limiting our ability to make a holistic analysis of instrument response. This analysis has therefore been largely restricted to pointwise comparisons where a fortuitious coincidence of reference three-component seismometers and colocated DAS cable allows. We evaluate DAS instrument response by comparing DAS measurements from the PoroTomo experiment with strain-rate wavefield reconstructed from the nodal seismic array deployed in the same experiment, allowing us to treat the entire DAS array in a systematic fashion irrespective of cable geometry relative to the location of nodes. We found that, while the phase differences are in general small, the amplitude differences between predicted and observed DAS strain rates average a factor of 2 across the array and correlate with near-surface geology, suggesting that careful assessment of DAS deployments is essential for applications that require reliable assessments of amplitude. We further discuss strategies for empirical gain corrections and optimal placement of point sensor deployments to generate the best combined sensitivity with an already deployed DAS cable, from a wavefield reconstruction perspective.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
