skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using a Bayesian-Inference Approach to Calibrating Models for Simulation in Robotics
Abstract In robotics, simulation has the potential to reduce design time and costs, and lead to a more robust engineered solution and a safer development process. However, the use of simulators is predicated on the availability of good models. This contribution is concerned with improving the quality of these models via calibration, which is cast herein in a Bayesian framework. First, we discuss the Bayesian machinery involved in model calibration. Then, we demonstrate it in one example: calibration of a vehicle dynamics model that has low degree-of-freedom (DOF) count and can be used for state estimation, model predictive control, or path planning. A high fidelity simulator is used to emulate the “experiments” and generate the data for the calibration. The merit of this work is not tied to a new Bayesian methodology for calibration, but to the demonstration of how the Bayesian machinery can establish connections among models in computational dynamics, even when the data in use is noisy. The software used to generate the results reported herein is available in a public repository for unfettered use and distribution.  more » « less
Award ID(s):
2153855
PAR ID:
10448882
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Computational and Nonlinear Dynamics
Volume:
18
Issue:
6
ISSN:
1555-1415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bayesian boundary condition (BC) calibration approaches from clinical measurements have successfully quantified inherent uncertainties in cardiovascular fluid dynamics simulations. However, estimating the posterior distribution for all BC parameters in three-dimensional (3D) simulations has been unattainable due to infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors: We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. Optimizing 0D models to match 3D dataa priorilowered their median approximation error by nearly one order of magnitude in 72 publicly available vascular models. The optimized 0D models generalized well to a wide range of BCs. Using SMC, we evaluated the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model, which we validated against a 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations. This article is part of the theme issue ‘Uncertainty quantification for healthcare and biological systems (Part 1)’. 
    more » « less
  2. Abstract Both hydrological and geophysical data can be used to calibrate hillslope hydrologic models. However, these data often reflect hydrological dynamics occurring at disparate spatial scales. Their use as sole objectives in model calibrations may thus result in different optimum hydraulic parameters and hydrologic model behavior. This is especially true for mountain hillslopes where the subsurface is often heterogeneous and the representative elementary volume can be on the scale of several m3. This study explores differences in hydraulic parameters and hillslope‐scale storage and flux dynamics of models calibrated with different hydrological and geophysical data. Soil water content, groundwater level, and two time‐lapse electrical resistivity tomography (ERT) data sets (transfer resistance and inverted resistivity) from two mountain hillslopes in Wyoming, USA, are used to calibrate physics‐based surface–subsurface hydrologic models of the hillslopes. Calibrations are performed using each data set independently and all data together resulting in five calibrated parameter sets at each site. Model predicted hillslope runoff and internal hydrological dynamics vary significantly depending on the calibration data set. Results indicate that water content calibration data yield models that overestimate near‐surface water storage in mountain hillslopes. Groundwater level calibration data yield models that more reasonably represent hillslope‐scale storage and flux dynamics. Additionally, ERT calibration data yield models with reasonable hillslope runoff predictions but relatively poor predictions of internal hillslope dynamics. These observations highlight the importance of carefully selecting data for hydrologic model calibration in mountain environments. Poor selection of calibration data may yield models with limited predictive capability depending on modeling goals and model complexity. 
    more » « less
  3. Abstract Climate models are generally calibrated manually by comparing selected climate statistics, such as the global top‐of‐atmosphere energy balance, to observations. The manual tuning only targets a limited subset of observational data and parameters. Bayesian calibration can estimate climate model parameters and their uncertainty using a larger fraction of the available data and automatically exploring the parameter space more broadly. In Bayesian learning, it is natural to exploit the seasonal cycle, which has large amplitude compared with anthropogenic climate change in many climate statistics. In this study, we develop methods for the calibration and uncertainty quantification (UQ) of model parameters exploiting the seasonal cycle, and we demonstrate a proof‐of‐concept with an idealized general circulation model (GCM). UQ is performed using the calibrate‐emulate‐sample approach, which combines stochastic optimization and machine learning emulation to speed up Bayesian learning. The methods are demonstrated in a perfect‐model setting through the calibration and UQ of a convective parameterization in an idealized GCM with a seasonal cycle. Calibration and UQ based on seasonally averaged climate statistics, compared to annually averaged, reduces the calibration error by up to an order of magnitude and narrows the spread of the non‐Gaussian posterior distributions by factors between two and five, depending on the variables used for UQ. The reduction in the spread of the parameter posterior distribution leads to a reduction in the uncertainty of climate model predictions. 
    more » « less
  4. Abstract. We developed a new rule-based, cellular-automaton algorithm for predicting the hazard extent, sediment transport, and topographic change associated with the runout of a landslide. This algorithm, which we call MassWastingRunout (MWR), is coded in Python and implemented as a component for the package Landlab. MWR combines the functionality of simple runout algorithms used in landscape evolution and watershed sediment yield models with the predictive detail typical of runout models used for landslide inundation hazard mapping. An initial digital elevation model (DEM), a regolith depth map, and the location polygon of the landslide source area are the only inputs required to run MWR to model the entire runout process. Runout relies on the principle of mass conservation and a set of topographic rules and empirical formulas that govern erosion and deposition. For the purpose of facilitating rapid calibration to a site, MWR includes a calibration utility that uses an adaptive Bayesian Markov chain Monte Carlo algorithm to automatically calibrate the model to match observed runout extent, deposition, and erosion. Additionally, the calibration utility produces empirical probability density functions of each calibration parameter that can be used to inform probabilistic implementation of MWR. Here we use a series of synthetic terrains to demonstrate basic model response to topographic convergence and slope, test calibrated model performance relative to several observed landslides, and briefly demonstrate how MWR can be used to develop a probabilistic runout hazard map. A calibrated runout model may allow for region-specific and more insightful predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics and should be further investigated in future modeling studies. 
    more » « less
  5. null (Ed.)
    Bayesian hybrid models fuse physics-based insights with machine learning constructs to correct for systematic bias. In this paper, we compare Bayesian hybrid models against physics-based glass-box and Gaussian process black-box surrogate models. We consider ballistic firing as an illustrative case study for a Bayesian decision-making workflow. First, Bayesian calibration is performed to estimate model parameters. We then use the posterior distribution from Bayesian analysis to compute optimal firing conditions to hit a target via a single-stage stochastic program. The case study demonstrates the ability of Bayesian hybrid models to overcome systematic bias from missing physics with fewer data than the pure machine learning approach. Ultimately, we argue Bayesian hybrid models are an emerging paradigm for data-informed decision-making under parametric and epistemic uncertainty. 
    more » « less