skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations
We study the inverse problem for the fractional Laplace equation with multiple nonlinear lower order terms. We show that the direct problem is well-posed and the inverse problem is uniquely solvable. More specifically, the unknown nonlinearities can be uniquely determined from exterior measurements under suitable settings.  more » « less
Award ID(s):
2006731 2001959
PAR ID:
10448906
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inverse Problems & Imaging
Volume:
16
Issue:
2
ISSN:
1930-8337
Page Range / eLocation ID:
305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates. 
    more » « less
  2. Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball. 
    more » « less
  3. Abstract We study the inverse problem of recovering the doping profile in the stationary Vlasov–Poisson equation, given the knowledge of the incoming and outgoing measurements at the boundary of the domain. This problem arises from identifying impurities in the semiconductor manufacturing. Our result states that, under suitable assumptions, the doping profile can be uniquely determined through an asymptotic formula of the electric field that it generates. 
    more » « less
  4. Abstract Computational inverse problems utilize a finite number of measurements to infer a discrete approximation of the unknown parameter function. With motivation from the setting of PDE-based optimization, we study the unique reconstruction of discretized inverse problems by examining the positivity of the Hessian matrix. What is the reconstruction power of a fixed number of data observations? How many parameters can one reconstruct? Here we describe a probabilistic approach, and spell out the interplay of the observation size (r) and the number of parameters to be uniquely identified (m). The technical pillar here is the random sketching strategy, in which the matrix concentration inequality and sampling theory are largely employed. By analyzing a randomly subsampled Hessian matrix, we attain a well-conditioned reconstruction problem with high probability. Our main theory is validated in numerical experiments, using an elliptic inverse problem as an example. 
    more » « less
  5. Abstract The inverse problem in gravimetry is to find a domain 𝐷 inside the reference domain Ω from boundary measurements of gravitational force outside Ω.We found that about five parameters of the unknown 𝐷 can be stably determined given data noise in practical situations.An ellipse is uniquely determined by five parameters.We prove uniqueness and stability of recovering an ellipse for the inverse problem from minimal amount of data which are the gravitational force at three boundary points.In the proofs, we derive and use simple systems of linear and nonlinear algebraic equations for natural parameters of an ellipse.To illustrate the technique, we use these equations in numerical examples with various location of measurements points on ∂ ⁡ Ω \partial\Omega .Similarly, a rectangular 𝐷 is considered.We consider the problem in the plane as a model for the three-dimensional problem due to simplicity. 
    more » « less