skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical Time, Space, and Decision‐Making Agent Considerations in Human‐Centered Interdisciplinary Hurricane‐Related Research
Abstract In hazard and disaster contexts, human‐centered approaches are promising for interdisciplinary research since humans and communities feature prominently in many definitions of disaster and the built environment is designed and constructed by humans to serve their needs. With a human‐centered approach, the decision‐making agent becomes a critical consideration. This article discusses and illustrates the need for alignment of decision‐making agents, time, and space for interdisciplinary research on hurricanes, particularly evacuation and the immediate aftermath. We specifically consider the fields of sociobehavioral science, transportation engineering, power systems engineering, and decision support systems in this context. These disciplines have historically adopted different decision‐making agents, ranging from individuals to households to utilities and government agencies. The fields largely converged to the local level for studies’ spatial scales, with some extensions based on the physical construction and operation of some systems. Greater discrepancy across the fields is found in the frequency of data collection, which ranges from one time (e.g., surveys) to continuous monitoring systems (e.g., sensors). Resolving these differences is important for the success of interdisciplinary teams in protective‐action‐related disaster research.  more » « less
Award ID(s):
1735139 1832688
PAR ID:
10448957
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
41
Issue:
7
ISSN:
0272-4332
Page Range / eLocation ID:
p. 1218-1226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is a growing understanding that cross‐sector risks faced by critical infrastructure assets in natural disasters require a collaborative foresight from multiple disciplines. However, current contributions to infrastructure interdependency analysis remain centered in discipline‐specific methodologies often constrained by underlying theories and assumptions. This perspective article contributes to ongoing discussions about the uses, challenges, and opportunities provided by interdisciplinary research in critical infrastructure interdependency analysis. In doing so, several modes of integration of computational modeling with contributions from the social sciences and other disciplines are explored to advance knowledge that can improve the infrastructure system resilience under extreme events. Three basic modes of method integration are identified and discussed: (a) integrating engineering models and social science research, (b) engaging communities in participative and collaborative forms of social learning and problem solving using simulation models to facilitate synthesis, exploration, and evaluation of scenarios, and (c) developing interactive simulations where IT systems and humans act as “peers” leveraging the capacity of distributed networked platforms and human‐in‐the‐loop architectures for improving situational awareness, real‐time decision making, and response capabilities in natural disasters. Depending on the conceptualization of the issues under investigation, these broadly defined modes of integration can coalesce to address key issues in promoting interdisciplinary research by outlining potential areas of future inquiry that would be most beneficial to the critical infrastructure protection communities. 
    more » « less
  2. Dialog systems (e.g., chatbots) have been widely studied, yet related research that leverages artificial intelligence (AI) and natural language processing (NLP) is constantly evolving. These systems have typically been developed to interact with humans in the form of speech, visual, or text conversation. As humans continue to adopt dialog systems for various objectives, there is a need to involve humans in every facet of the dialog development life cycle for synergistic augmentation of both the humans and the dialog system actors in real-world settings. We provide a holistic literature survey on the recent advancements inhuman-centered dialog systems(HCDS). Specifically, we provide background context surrounding the recent advancements in machine learning-based dialog systems and human-centered AI. We then bridge the gap between the two AI sub-fields and organize the research works on HCDS under three major categories (i.e., Human-Chatbot Collaboration, Human-Chatbot Alignment, Human-Centered Chatbot Design & Governance). In addition, we discuss the applicability and accessibility of the HCDS implementations through benchmark datasets, application scenarios, and downstream NLP tasks. 
    more » « less
  3. Abstract Human-Building Interaction (HBI) is a convergent field that represents the growing complexities of the dynamic interplay between human experience and intelligence within built environments. This paper provides core definitions, research dimensions, and an overall vision for the future of HBI as developed through consensus among 25 interdisciplinary experts in a series of facilitated workshops. Three primary areas contribute to and require attention in HBI research: humans (human experiences, performance, and well-being), buildings (building design and operations), and technologies (sensing, inference, and awareness). Three critical interdisciplinary research domains intersect these areas: control systems and decision making, trust and collaboration, and modeling and simulation. Finally, at the core, it is vital for HBI research to center on and support equity, privacy, and sustainability. Compelling research questions are posed for each primary area, research domain, and core principle. State-of-the-art methods used in HBI studies are discussed, and examples of original research are offered to illustrate opportunities for the advancement of HBI research. 
    more » « less
  4. The social media have been increasingly used for disaster management (DM) via providing real time data on a broad scale. For example, some smartphone applications (e.g. Disaster Alert and Federal Emergency Management Agency (FEMA) App) can be used to increase the efficiency of prepositioning supplies and to enhance the effectiveness of disaster relief efforts. To maximize utilities of these apps, it is imperative to have robust human behavior models in social networks with detailed expressions of individual decision-making processes and of the interactions among people. In this paper, we introduce a hierarchical human behavior model by associating extended Decision Field Theory (e-DFT) with the opinion formation and innovation diffusion models. Particularly, its expressiveness and validity are addressed in three ways. First, we estimate individual’s choice patterns in social networks by deriving people’s asymptotic choice probabilities within e-DFT. Second, by analyzing opinion formation models and innovation diffusion models in different types of social networks, the effects of neighbor’s opinions on people and their interactions are demonstrated. Finally, an agent-based simulation is used to trace agents’ dynamic behaviors in different scenarios. The simulated results reveal that the proposed models can be used to establish better disaster management strategies in natural disasters. 
    more » « less
  5. Akaishi, Rei (Ed.)
    Cognitive rehabilitation, STEM (science, technology, engineering, and math) skill acquisition, and coaching games such as chess often require tutoring decision-making strategies. The advancement of AI-driven tutoring systems for facilitating human learning requires an understanding of the impact of evaluative feedback on human decision-making and skill development. To this end, we conduct human experiments using Amazon Mechanical Turk to study the influence of evaluative feedback on human decision-making in sequential tasks. In these experiments, participants solve the Tower of Hanoi puzzle and receive AI-generated feedback while solving it. We examine how this feedback affects their learning and skill transfer to related tasks. Additionally, treating humans as noisy optimal agents, we employ maximum entropy inverse reinforcement learning to analyze the effect of feedback on the implicit human reward structure that guides their decision making. Lastly, we explore various computational models to understand how people incorporate evaluative feedback into their decision-making processes. Our findings underscore that humans perceive evaluative feedback as indicative of their long-term strategic success, thus aiding in skill acquisition and transfer in sequential decision-making tasks. Moreover, we demonstrate that evaluative feedback fosters a more structured and organized learning experience compared to learning without feedback. Furthermore, our results indicate that providing intermediate goals alone does not significantly enhance human learning outcomes. 
    more » « less