skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical and Chemical Analysis of Absorption Enhancement by Mixed Carbonaceous Aerosols in the 2019 Woodbury, AZ, Fire Plume
Abstract Wildfires emit mixtures of light‐absorbing aerosols (including black and brown carbon, BC and BrC, respectively) and more purely scattering organic aerosol (OA). BC, BrC, and OA interactions are complex and dynamic and evolve with aging in the atmosphere resulting in large uncertainties in their radiative forcing. We report microphysical, optical, and chemical measurements of multiple plumes from the Woodbury Fire (AZ, USA) observed at Los Alamos, NM, after 11–18 hr of atmospheric transit. This includes periods where the plumes exhibited little entrainment as well as periods that had become more dilute after mixing with background aerosol. Aerosol mass absorption cross sections (MAC) were enhanced by a factor of 1.5–2.2 greater than bare BC at 870 nm, suggesting lensing by nonabsorbing coatings following a core‐shell morphology. Larger MAC enhancement factors of 1.9–5.1 at 450 nm are greater than core‐shell morphology can explain and are attributed to BrC. MAC of OA (MACOrg) at 450 nm was largest in intact portions of the plumes (peak value bounded between 0.6 and 0.9 m2/g [Org]) and decreased with plume dilution. We report a strong correlation between MACOrg(450 nm) with the fC2H4O2(a tracer for levoglucosan‐like species) of coatings and of bulk OA indicating that BrC in the Woodbury Fire was coemitted with levoglucosan, a primary aerosol. fC2H4O2and MACOrg(450 nm) are shown to vary between the edge and the core of plumes, demonstrating enhanced oxidation of OA and BrC bleaching near plume edges. Our process‐level finding can inform parameterizations of mixed BC, BrC, and OA properties for wildfire plumes in climate models.  more » « less
Award ID(s):
1832813
PAR ID:
10449076
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
15
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs. 
    more » « less
  2. Abstract. The evolution of organic aerosol (OA) and aerosol sizedistributions within smoke plumes is uncertain due to the variability inrates of coagulation and OA condensation/evaporation between different smokeplumes and at different locations within a single plume. We use aircraftdata from the FIREX-AQ campaign to evaluate differences in evolving aerosolsize distributions, OA, and oxygen to carbon ratios (O:C) between and withinsmoke plumes during the first several hours of aging as a function of smokeconcentration. The observations show that the median particle diameterincreases faster in smoke of a higher initial OA concentration (>1000 µg m−3), with diameter growth of over 100 nm in 8 h – despite generally having a net decrease in OA enhancementratios – than smoke of a lower initial OA concentration (<100 µg m−3), which had net increases in OA. Observations of OA and O:Csuggest that evaporation and/or secondary OA formation was greater in lessconcentrated smoke prior to the first measurement (5–57 min afteremission). We simulate the size changes due to coagulation and dilution andadjust for OA condensation/evaporation based on the observed changes in OA.We found that coagulation explains the majority of the diameter growth, withOA evaporation/condensation having a relatively minor impact. We found thatmixing between the core and edges of the plume generally occurred ontimescales of hours, slow enough to maintain differences in aging betweencore and edge but too fast to ignore the role of mixing for most of our cases. 
    more » « less
  3. Abstract. Light absorbing organic carbon, or brown carbon (BrC), can be a significantcontributor to the visible light absorption budget. However, the sources ofBrC and the contributions of BrC to light absorption are not wellunderstood. Biomass burning is thought to be a major source of BrC.Therefore, as part of the WE-CAN (Western Wildfire Experiment for CloudChemistry, Aerosol Absorption and Nitrogen) study, BrC absorption data werecollected on board the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130 aircraft as it intercepted smoke fromwildfires in the western US in July–August 2018. BrC absorptionmeasurements were obtained in near real-time using two techniques. The firstcoupled a particle-into-liquid sampler (PILS) with a liquid waveguidecapillary cell and a total organic carbon analyzer for measurements ofwater-soluble BrC absorption and WSOC (water-soluble organic carbon). Thesecond employed a custom-built photoacoustic aerosol absorption spectrometer(PAS) to measure total absorption at 405 and 660 nm. The PAS BrC absorption at 405 nm (PAS total Abs 405 BrC) was calculated by assuming the absorption determined by the PAS at 660 nm was equivalent to the black carbon (BC) absorption and the BC aerosol absorption Ångström exponent was 1. Data from the PILS and PAS were combined to investigate the water-soluble vs. total BrC absorption at 405 nm in the various wildfire plumes sampled during WE-CAN. WSOC, PILS water-soluble Abs 405, and PAS total Abs 405 tracked each other in and out of the smoke plumes. BrC absorption was correlated with WSOC (R2 value for PAS =0.42 and PILS =0.60) and CO (carbon monoxide) (R2 value for PAS =0.76 and PILS =0.55) for all wildfires sampled. The PILS water-soluble Abs 405 was corrected for thenon-water-soluble fraction of the aerosol using the calculated UHSAS(ultra-high-sensitivity aerosol spectrometer) aerosol mass. The correctedPILS water-soluble Abs 405 showed good closure with the PAS total Abs 405BrC with a factor of ∼1.5 to 2 difference. This differencewas explained by particle vs. bulk solution absorption measured by the PASvs. PILS, respectively, and confirmed by Mie theory calculations. DuringWE-CAN, ∼ 45 % (ranging from 31 % to 65 %) of the BrCabsorption was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on firedynamics or the time since emission over 9 h. 
    more » « less
  4. Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven by higher-than-ambient OH concentrations (3×10 6 -10 7 molecules cm -3 ) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<10 6 molecules cm -3 ) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with physical age. 
    more » « less
  5. null (Ed.)
    Abstract. Organic aerosol (OA) emissions from biomass burning havebeen the subject of intense research in recent years, involving acombination of field campaigns and laboratory studies. These efforts haveaimed at improving our limited understanding of the diverse processes andpathways involved in the atmospheric processing and evolution of OAproperties, culminating in their accurate parameterizations in climate andchemical transport models. To bring closure between laboratory and fieldstudies, wildfire plumes in the western United States were sampled andcharacterized for their chemical and optical properties during theground-based segment of the 2019 Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Using acustom-developed multiwavelength integrated photoacoustic-nephelometerspectrometer in conjunction with a suite of instruments, including anoxidation flow reactor equipped to generate hydroxyl (OH⚫) ornitrate (NO3⚫) radicals to mimic daytime or nighttimeoxidative aging processes, we investigated the effects of multipleequivalent hours of OH⚫ or NO3⚫ exposure onthe chemical composition and mass absorption cross-sections (MAC(λ)) at 488 and 561 nm of OA emitted from wildfires in Arizona and Oregon. Wefound that OH⚫ exposure induced a slight initial increase inabsorption corresponding to short timescales; however, at longer timescales, the wavelength-dependent MAC(λ) decreased by a factor of0.72 ± 0.08, consistent with previous laboratory studies and reportsof photobleaching. On the other hand, NO3⚫ exposure increasedMAC(λ) by a factor of up to 1.69 ± 0.38. We also noted somesensitivity of aerosol aging to different fire conditions between Arizonaand Oregon. The MAC(λ) enhancement following NO3⚫ exposure was found to correlate with an enhancement in CHO1N andCHOgt1N ion families measured by an Aerodyne aerosol mass spectrometer. 
    more » « less