skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative
Ecological restoration should be regarded as a public health service. Unfortunately, the lack of quantitative linkages between environmental and human health has limited recognition of this principle. The advent of the COVID‐19 pandemic provides the impetus for further discussion. We propose ecological countermeasures as highly targeted, landscape‐based interventions to arrest the drivers of land use‐induced zoonotic spillover. We provide examples of ecological restoration activities that reduce zoonotic disease risk and a five‐point action plan at the human‐ecosystem health nexus. In conclusion, we make the case that ecological countermeasures are a tenet of restoration ecology with human health goals.  more » « less
Award ID(s):
1716698
PAR ID:
10449087
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
29
Issue:
4
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of biodiversity change. The COVID-19 pandemic increased health policymakers’ attention on the links between ecological degradation and disease, and sparked discussions around nature-based interventions to mitigate zoonotic emergence and epidemics. Yet, although disease ecology provides an increasingly granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as complex socio-ecological systems—a‘people and nature’paradigm—is needed to identify local interventions and transformative system-wide changes that could reduce human disease burden. We discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have largely framed people as ecological disruptors, and discuss three emerging research areas that provide wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease, feedbacks between disease, biodiversity and social vulnerability and the role of human-to-animal pathogen transmission (‘spillback’) in zoonotic disease systems. We conclude by discussing new opportunities to better understand the predictability of human disease outcomes from biodiversity change and to integrate ecological drivers of disease into health intervention design and evaluation. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’. 
    more » « less
  2. Zoonotic diseases are infectious diseases of humans caused by pathogens that are shared between humans and other vertebrate animals. Previously, pristine natural areas with high biodiversity were seen as likely sources of new zoonotic pathogens, suggesting that biodiversity could have negative impacts on human health. At the same time, biodiversity has been recognized as potentially benefiting human health by reducing the transmission of some pathogens that have already established themselves in human populations. These apparently opposing effects of biodiversity in human health may now be reconcilable. Recent research demonstrates that some taxa are much more likely to be zoonotic hosts than others are, and that these animals often proliferate in human-dominated landscapes, increasing the likelihood of spillover. In less-disturbed areas, however, these zoonotic reservoir hosts are less abundant and nonreservoirs predominate. Thus, biodiversity loss appears to increase the risk of human exposure to both new and established zoonotic pathogens. This new synthesis of the effects of biodiversity on zoonotic diseases presents an opportunity to articulate the next generation of research questions that can inform management and policy. Future studies should focus on collecting and analyzing data on the diversity, abundance, and capacity to transmit of the taxa that actually share zoonotic pathogens with us. To predict and prevent future epidemics, researchers should also focus on how these metrics change in response to human impacts on the environment, and how human behaviors can mitigate these effects. Restoration of biodiversity is an important frontier in the management of zoonotic disease risk. 
    more » « less
  3. Abstract Zoonotic diseases represent 75% of emerging infectious diseases worldwide, and their emergence is mainly attributed to human‐driven changes in landscapes. Land use change, especially the conversion of natural areas to agricultural use, has the potential to impact hosts and vector dynamics, affecting pathogen transmission risk. While these links are becoming better understood, very few studies have investigated the opposite question—how native vegetation restoration affects zoonotic disease outbreaks.We reviewed the existing evidence linking native vegetation restoration with zoonotic transmission risk, identified knowledge gaps, and, by focusing on tropical areas, proposed forest restoration strategies that could help in limiting the spread of zoonotic diseases.We identified a large gap in information on the effects of native vegetation restoration on zoonotic diseases, especially within tropical regions. In addition, the few studies that exist do not consider environmental aspects that can affect the outcomes of restoration on disease risk, such as the land use history and landscape structural characteristics (as composition and configuration of native habitats). Our conceptual framework raises two important points: (1) the effects of forest restoration may depend on the context of the existing landscape, especially the percentage of native vegetation existing at the beginning of the restoration; and (2) these effects will also be dependent on the spatial arrangement of the restored area within the existing landscape. Furthermore, we propose important topics to be studied in the coming years to integrate zoonotic disease risk as a criterion in restoration planning.Synthesis and application. Our results contribute to a more comprehensive forest restoration planning, comprising multiple ecosystem services and resulting in healthier landscapes for both people and nature. Our framework could be integrated into the post‐2020 global biodiversity framework targets. 
    more » « less
  4. Abstract Air pollution has posed health and environmental threats since the Industrial Revolution. Technological solutions present major expenses for industry, yet nature's ecosystems also provide pollution uptake. In the pursuit of techno‐ecological sustainable design, this work presents a framework for spatially‐explicit industrial site design that determines where and when ecological restoration should be considered. The framework considers land use changes and identifies the cheapest balance between technological and ecological uptake for industrial landscapes, including the impacts of long term ecological growth dynamics. This work presents the framework's construction along with a case study conducted for a coal‐fired power station in Ohio. The results provide spatial maps of proposed restoration areas, projected savings values, and spatial‐temporal maps that consider annual budget constraints. The results demonstrate a significant sensitivity to land use restoration costs and highlights ecological advantages, like simultaneous uptake of different chemical species. 
    more » « less
  5. Abstract Common practices for invasive species control and management include physical, chemical, and biological approaches. The first two approaches have clear limitations and may lead to unintended (negative) consequences, unless carefully planned and implemented. For example, physical removal rarely completely eradicates the targeted invasive species and can cause disturbances that facilitate new invasions by nonnative species from nearby habitats. Chemical treatments can harm native, and especially rare, species through unanticipated side effects. Biological methods may be classified as biocontrol and the ecological approach. Similar to physical and chemical methods, biocontrol also has limitations and sometimes leads to unintended consequences. Therefore, a relatively safer and more practical choice may be the ecological approach, which has two major components: (1) restoration of native species and (2) biomass manipulation of the restored community, such as selective grazing or prescribed burning (to achieve and maintain viable population sizes). Restoration requires well-planned and implemented planting designs that consider alpha-, beta-, and gamma-diversity and the abundance of native and invasive component species at local, landscape, and regional levels. Given the extensive destruction or degradation of natural habitats around the world, restoration could be most effective for enhancing ecosystem resilience and resistance to biotic invasions. At the same time, ecosystems in human-dominated landscapes, especially those newly restored, require close monitoring and careful intervention (e.g., through biomass manipulation), especially when successional trajectories are not moving as intended. Biomass management frequently uses prescribed burning, grazing, harvesting, and thinning to maintain overall ecosystem health and sustainability. Thus, the resulting optimal, balanced, and relatively stable ecological conditions could more effectively limit the spread and establishment of invasive species. Here we review the literature (especially within the last decade) on ecological approaches that involve biodiversity, biomass, and productivity, three key community/ecosystem variables that reciprocally influence one another. We focus on the common and most feasible ecological practices that can aid in resisting new invasions and/or suppressing the dominance of existing invasive species. We contend that, because of the strong influences from neighboring areas (i.e., as exotic species pools), local restoration and management efforts in the future need to consider the regional context and projected climate changes. 
    more » « less