skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transporting experimental results with entropy balancing
We show how entropy balancing can be used for transporting experimental treatment effects from a trial population onto a target population. This method is doubly robust in the sense that if either the outcome model or the probability of trial participation is correctly specified, then the estimate of the target population average treatment effect is consistent. Furthermore, we only require the sample moments of the effect modifiers drawn from the target population to consistently estimate the target population average treatment effect. We compared the finite‐sample performance of entropy balancing with several alternative methods for transporting treatment effects between populations. Entropy balancing techniques are efficient and robust to violations of model misspecification. We also examine the results of our proposed method in an applied analysis of the Action to Control Cardiovascular Risk in Diabetes Blood Pressure trial transported to a sample of US adults with diabetes taken from the National Health and Nutrition Examination Survey cohort.  more » « less
Award ID(s):
1914937
PAR ID:
10449154
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Statistics in Medicine
Volume:
40
Issue:
19
ISSN:
0277-6715
Page Range / eLocation ID:
p. 4310-4326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Complementary features of randomized controlled trials (RCTs) and observational studies (OSs) can be used jointly to estimate the average treatment effect of a target population. We propose a calibration weighting estimator that enforces the covariate balance between the RCT and OS, therefore improving the trial-based estimator's generalizability. Exploiting semiparametric efficiency theory, we propose a doubly robust augmented calibration weighting estimator that achieves the efficiency bound derived under the identification assumptions. A nonparametric sieve method is provided as an alternative to the parametric approach, which enables the robust approximation of the nuisance functions and data-adaptive selection of outcome predictors for calibration. We establish asymptotic results and confirm the finite sample performances of the proposed estimators by simulation experiments and an application on the estimation of the treatment effect of adjuvant chemotherapy for early-stage non-small-cell lung patients after surgery. 
    more » « less
  2. The first step toward investigating the effectiveness of a treatment via a randomized trial is to split the population into control and treatment groups then compare the average response of the treatment group receiving the treatment to the control group receiving the placebo. To ensure that the difference between the two groups is caused only by the treatment, it is crucial that the control and the treatment groups have similar statistics. Indeed, the validity and reliability of a trial are determined by the similarity of two groups’ statistics. Covariate balancing methods increase the similarity between the distributions of the two groups’ covariates. However, often in practice, there are not enough samples to accurately estimate the groups’ covariate distributions. In this article, we empirically show that covariate balancing with the standardized means difference (SMD) covariate balancing measure, as well as Pocock and Simon’s sequential treatment assignment method, are susceptible to worst case treatment assignments. Worst case treatment assignments are those admitted by the covariate balance measure, but result in highest possible ATE estimation errors. We developed an adversarial attack to find adversarial treatment assignment for any given trial. Then, we provide an index to measure how close the given trial is to the worst case. To this end, we provide an optimization-based algorithm, namely adversarial treatment assignment in treatment effect trials (ATASTREET), to find the adversarial treatment assignments. 
    more » « less
  3. In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture “compositional” differences in the distributions of unit-level features as well as “contextual” differences in site-level features, including possible differences in program implementation. Our goal in this article is to adjust site-level estimates for differences in the distribution of observed unit-level features: If we can reweight (or “transport”) each site to have a common distribution of observed unit-level covariates, the remaining treatment effect variation captures contextual and unobserved compositional differences across sites. This allows us to make apples-to-apples comparisons across sites, parceling out the amount of cross-site effect variation explained by systematic differences in populations served. In this article, we develop a framework for transporting effects using approximate balancing weights, where the weights are chosen to directly optimize unit-level covariate balance between each site and the common target distribution. We first develop our approach for the general setting of transporting the effect of a single-site trial. We then extend our method to multisite trials, assess its performance via simulation, and use it to analyze a series of multisite trials of adult education and vocational training programs. In our application, we find that distributional differences are potentially masking cross-site variation. Our method is available in the balancer R package. 
    more » « less
  4. Extant literature on moderation effects narrowly focuses on the average moderated treatment effect across the entire sample (AMTE). Missing is the average moderated treatment effect on the treated (AMTT) and other targeted subgroups (AMTS). Much like the average treatment effect on the treated (ATT) for main effects, the AMTS changes the target of inferences from the entire sample to targeted subgroups. Relative to the AMTE, the AMTS is identified under weaker assumptions and often captures more policy-relevant effects. We present a theoretical framework that introduces the AMTS under the potential outcomes framework and delineates the assumptions for causal identification. We then propose a generalized propensity score method as a tool to estimate the AMTS using weights derived with Bayes Theorem. We illustrate the results and differences among the estimands using data from the Early Childhood Longitudinal Study. We conclude with suggestions for future research. 
    more » « less
  5. Inverse probability of treatment weighting (IPTW), which has been used to estimate average treatment effects (ATE) using observational data, tenuously relies on the positivity assumption and the correct specification of the treatment assignment model, both of which are problematic assumptions in many observational studies. Various methods have been proposed to overcome these challenges, including truncation, covariate‐balancing propensity scores, and stable balancing weights. Motivated by an observational study in spine surgery, in which positivity is violated and the true treatment assignment model is unknown, we present the use of optimal balancing by kernel optimal matching (KOM) to estimate ATE. By uniformly controlling the conditional mean squared error of a weighted estimator over a class of models, KOM simultaneously mitigates issues of possible misspecification of the treatment assignment model and is able to handle practical violations of the positivity assumption, as shown in our simulation study. Using data from a clinical registry, we apply KOM to compare two spine surgical interventions and demonstrate how the result matches the conclusions of clinical trials that IPTW estimates spuriously refute. 
    more » « less