ABSTRACT Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N 2 fixer Trichodesmium fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N 2 fixation may reduce new-nitrogen inputs by Trichodesmium while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems. IMPORTANCE Trichodesmium is among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We used Trichodesmium cultures adapted to high-CO 2 conditions for 7 years, followed by additional exposure to iron and/or phosphorus (co)limitation. We show that “future ocean” conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation and instead toward upregulation of organic nitrogen-scavenging pathways. We show that the responses of Trichodesmium to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift toward organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling.
more »
« less
Evaluation of argon‐induced hydrogen production as a method to measure nitrogen fixation by cyanobacteria
The production of dihydrogen (H2) is an enigmatic yet obligate component of biological dinitrogen (N2) fixation. This study investigates the effect on H2production by N2fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O2:CO2). In the absence of N2, nitrogenase diverts the flow of electrons to the production of H2, which becomes a measure of Total Nitrogenase Activity (TNA). This method of argon‐induced hydrogen production (AIHP) is much less commonly used to infer rates of N2fixation than the acetylene reduction (AR) assay. We provide here a full evaluation of the AIHP method and demonstrate its ability to achieve high‐resolution measurements of TNA in a gas exchange flow‐through system. Complete diel profiles of H2production were obtained for N2fixing cyanobacteria despite the absence of N2that broadly reproduced the temporal patterns observed by the AR assay. Comparison of H2production under air versus Ar:O2:CO2revealed the efficiency of electron usage during N2fixation and place these findings in the broader context of cell metabolism. Ultimately, AIHP is demonstrated to be a viable alternative to the AR assay with several additional merits that provide an insight into cell physiology and promise for successful field application.
more »
« less
- Award ID(s):
- 1756524
- PAR ID:
- 10449249
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 57
- Issue:
- 3
- ISSN:
- 0022-3646
- Page Range / eLocation ID:
- p. 863-873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biological nitrogen fixation is the conversion of dinitrogen (N2) gas into bioavailable nitrogen by microorganisms with consequences for primary production, ecosystem function, and global climate. Here we present a compiled dataset of 4793 nitrogen fixation (N2-fixation) rates measured in the water column and benthos of inland and coastal systems via the acetylene reduction assay, 15N2 labeling, or N2/Ar technique. While the data are distributed across seven continents, most observations (88%) are from the northern hemisphere. 15N2 labeling accounted for 67% of water column measurements, while the acetylene reduction assay accounted for 81% of benthic N2-fixation observations. Dataset median area-, volume-, and mass-normalized N2-fixation rates are 7.1 μmol N2-N m−2 h−1, 2.3 × 10−4 μmol N2-N L−1 h−1, and 4.8 × 10−4 μmol N2-N g−1 h−1, respectively. This dataset will facilitate future efforts to study and scale N2-fixation contributions across inland and coastal aquatic environments.more » « less
-
Gilbert, Jack (Ed.)ABSTRACT The cyanobacterium Trichodesmium is an important contributor of new nitrogen (N) to the surface ocean, but its strategies for protecting the nitrogenase enzyme from inhibition by oxygen (O 2 ) remain poorly understood. We present a dynamic physiological model to evaluate hypothesized conditions that would allow Trichodesmium to carry out its two conflicting metabolic processes of N 2 fixation and photosynthesis. First, the model indicates that managing cellular O 2 to permit N 2 fixation requires high rates of respiratory O 2 consumption. The energetic cost amounts to ∼80% of daily C fixation, comparable to the observed diminution of the growth rate of Trichodesmium relative to other phytoplankton. Second, by forming a trichome of connected cells, Trichodesmium can segregate N 2 fixation from photosynthesis. The transfer of stored C to N-fixing cells fuels the respiratory O 2 consumption that protects nitrogenase, while the reciprocal transfer of newly fixed N to C-fixing cells supports cellular growth. Third, despite Trichodesmium lacking the structural barrier found in heterocystous species, the model predicts low diffusivity of cell membranes, a function that may be explained by the presence of Gram-negative membrane, production of extracellular polysaccharide substances (EPS), and “buffer cells” that intervene between N 2 -fixing and photosynthetic cells. Our results suggest that all three factors—respiratory protection, trichome formation, and diffusion barriers—represent essential strategies that, despite their energetic costs, facilitate the growth of Trichodesmium in the oligotrophic aerobic ocean and permit it to be a major source of new reactive nitrogen. IMPORTANCE Trichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates an extremely short life span of oxygen-enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis.more » « less
-
Abstract Life on Earth depends on N2‐fixing microbes to make ammonia from atmospheric N2gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2fixation was once believed to have evolved during the Archean‐Proterozoic times using Fe as a cofactor. However, δ15N values of paleo‐ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo‐oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral‐associated trace metals to a model N2‐fixing bacteriumAzotobacter vinelandii. N2fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral‐associated trace metals are bioavailable as cofactors of nitrogenases to support N2fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.more » « less
-
Abstract As part of a long-term study on the effects of nitrogen (N) loading in a shallow temperate lagoon, we measured rates of N2fixation associated with seagrass (Zostera marina) epiphytes during the summer from 2005 to 2019, at two sites along a gradient from where high N groundwater enters the system (denoted SH) to a more well-flushed outer harbor (OH). The data presented here are the first such long-term N2fixation estimates for any seagrass system and one of the very few reported for the phyllosphere in a temperate system. Mean daily N2fixation was estimated from light and dark measurements using the acetylene reduction assay intercalibrated using both incorporation of15N2into biomass and a novel application of the N2:Ar method. Surprisingly, despite a large inorganic N input from a N-contaminated groundwater plume, epiphytic N2fixation rates were moderately to very high for a seagrass system (OH site 14-year mean of 0.94 mmol N m−2 d−1), with the highest rates (2.6 mmol N m−2 d−1) measured at the more N-loaded eutrophic site (SH) where dissolved inorganic N was higher and soluble reactive phosphorus was lower than in the better-flushed OH. Over 95% of the total N2fixation measured was in the light, suggesting the importance of cyanobacteria in the epiphyte assemblages. We observed large inter-annual variation both within and across the two study sites (range from 0.1 to 2.6 mmol N fixed m−2d−1), which we suggest is in part related to climatic variation. We estimate that input from phyllosphere N2fixation over the study period contributes on average an additional 20% to the total daily N load per area within the seagrass meadow.more » « less
An official website of the United States government
